×

Two novel energy dissipative difference schemes for the strongly coupled nonlinear space fractional wave equations with damping. (English) Zbl 1446.65080

Summary: In this paper, two new efficient energy dissipative difference schemes for the strongly coupled nonlinear damped space fractional wave equations are first set forth and analyzed, which involve a two-level nonlinear difference scheme, and a three-level linear difference scheme based on invariant energy quadratization formulation. Then the discrete energy dissipation properties, solvability, unconditional convergence and stability of the proposed schemes are exhibited rigidly. By the discrete energy analysis method, it is rigidly shown that the proposed schemes achieve the unconditional convergence rates of \(\mathcal{O}(\Delta t^2 + h^2)\) in the discrete \(L^\infty\)-norm for the associated numerical solutions. At last, some numerical results are provided to illustrate the dynamical behaviors of the damping terms and unconditional energy stability of the suggested schemes, and testify the efficiency of theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals

Software:

LIMbook
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acosta, G.; Borthagaray, J., A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55, 472-495 (2017) · Zbl 1359.65246
[2] Akrivis, G.; Li, B.; Li, D., Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations, SIAM J. Sci. Comput., 41, 3703-3727 (2019) · Zbl 1435.65141
[3] Bao, W.; Cai, Y.; Zhao, X., A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 52, 2488-2511 (2014) · Zbl 1310.65131
[4] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Chapman et Hall/CRC Press: Chapman et Hall/CRC Press Boca Raton, FL · Zbl 1335.65097
[5] Celik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 1743-1750 (2012) · Zbl 1242.65157
[6] Chen, W.; Li, X.; Liang, D., Energy-conserved splitting FDTD methods for Maxwell’s equations, Numer. Math., 108, 445-485 (2008) · Zbl 1185.78020
[7] Chen, W.; Li, X.; Liang, D., Energy-conserved splitting finite-difference time-domain methods for Maxwell’s equations in three dimensions, SIAM J. Numer. Anal., 48, 1530-1554 (2010) · Zbl 1220.78116
[8] Cohen, D.; Hairer, E.; Lubich, C., Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math., 110, 113-143 (2008) · Zbl 1163.65066
[9] Cooper, S.; Savostianov, A., Homogenisation with error estimates of attractors for damped semi-linear anisotropic wave equations, Adv. Nonlinear Anal., 9, 745-787 (2020) · Zbl 1429.35020
[10] D’Abbicco, M.; Ebert, M., New phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Anal., 149, 1-40 (2017) · Zbl 1355.35015
[11] Dahlby, M.; Owren, B., A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33, 2318-2340 (2011) · Zbl 1246.65240
[12] Dai, W.; Nassar, R., A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film, Numer. Methods Partial Differ. Equ., 16, 441-458 (2000) · Zbl 0961.65072
[13] Dao, T., A note on a weakly coupled system of semi-linear visco-elastic damped σ-evolution models with different power nonlinearities and different σ values (2018)
[14] Deng, D.; Liang, D., The energy preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions, Appl. Numer. Math., 151, 172-198 (2020) · Zbl 1434.65111
[15] Deng, D.; Zhang, Z., A new high-order algorithm for a class of nonlinear evolution equation, J. Phys. A, Math. Theor., 41, Article 015202 pp. (2008) · Zbl 1159.35072
[16] Deng, D.; Zhang, C., Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations, Appl. Math. Model., 39, 1033-1049 (2015) · Zbl 1432.65119
[17] Ding, H.; Li, C., Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations, Fract. Calc. Appl. Anal., 20, 722-764 (2017) · Zbl 1365.65194
[18] Du, N.; Wang, H., A fast finite element method for space-fractional dispersion equations on bounded domains in R^2, SIAM J. Sci. Comput., 37, 1614-1635 (2015) · Zbl 1331.65175
[19] Dzgn, F. G.; Iannizzotto, A., Three nontrivial solutions for nonlinear fractional Laplacian equations, Adv. Nonlinear Anal., 7, 211-226 (2018) · Zbl 1390.35394
[20] Fečkan, M.; Wang, J., Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8, 482-496 (2019) · Zbl 1418.34010
[21] Gong, Y.; Zhao, J.; Yang, X.; Wang, Q., Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40, 138-167 (2018) · Zbl 1457.65050
[22] Hao, Z.; Sun, Z.; Cao, W., A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281, 787-805 (2015) · Zbl 1352.65238
[23] Jin, B.; Lazarov, R.; Pasciak, J.; Rundell, W., Variational formulation of problems involving fractional order differential operators, Math. Comput., 84, 2665-2700 (2015) · Zbl 1321.65127
[24] Li, M.; Gu, X.; Huang, C.; Fei, M.; Zhang, G., A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358, 256-282 (2018) · Zbl 1382.65320
[25] Li, X.; Shen, J.; Rui, H., Energy stability and convergence of SAV blocked-centered finite difference method for gradient flows, Math. Comput., 88, 2047-2068 (2019) · Zbl 1422.65165
[26] Lian, W.; Xu, R., Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9, 613-632 (2020) · Zbl 1421.35222
[27] Macías-Díaz, J. E., Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 46, 89-102 (2017) · Zbl 1485.35400
[28] Macías-Díaz, J. E., A parallelized computational model for multidimensional systems of coupled nonlinear fractional hyperbolic equations, J. Comput. Phys., 402, Article 109043 pp. (2020) · Zbl 1453.65227
[29] Mohammed, A.; Rǎdulescu, V. D.; Vitolo, A., Blow-up solutions for fully nonlinear equations: existence, asymptotic estimates and uniqueness, Adv. Nonlinear Anal., 9, 39-64 (2020) · Zbl 1426.35123
[30] Moll, V.; Rorencrans, S., Calculation of the threshold surface for nerve equation, SIAM J. Appl. Math., 50, 1419-1441 (1990) · Zbl 0743.35036
[31] Pham, D.; Mezadek, M.; Reissig, M., Global existence for semi-linear structurally damped σ-evolution models, J. Math. Anal. Appl., 431, 569-596 (2015) · Zbl 1327.35411
[32] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[33] Ran, M.; Zhang, C., A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations, Commun. Nonlinear Sci. Numer. Simul., 41, 64-83 (2016) · Zbl 1458.65112
[34] Segal, I., Nonlinear partial differential equations in quantum field theory, Proc. Symp. Appl. Math., 17, 210-226 (1965) · Zbl 0152.23902
[35] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181
[36] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213-231 (2018) · Zbl 1509.26005
[37] Tian, W.; Zhou, H.; Deng, W., A class of second order difference approximation for solving space fractional diffusion equations, Math. Comput., 84, 1703-1727 (2015) · Zbl 1318.65058
[38] Vong, S.; Lyu, P.; Chen, X.; Lei, S., High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Lliouville derivatives, Numer. Algorithms, 72, 195-210 (2016) · Zbl 1382.65259
[39] Vu-Quoc, L.; Li, S., Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation, Comput. Methods Appl. Mech. Eng., 107, 341-391 (1993) · Zbl 0790.65101
[40] Wang, B.; Wu, X., The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations, IMA J. Numer. Anal., 39, 2016-2044 (2019) · Zbl 1496.65188
[41] Wang, W.; Zhang, C., Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numer. Math., 115, 451-474 (2010) · Zbl 1193.65140
[42] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382-399 (2013) · Zbl 1349.65347
[43] Wang, Q.; Zhang, Z.; Zhang, X.; Zhu, Q., Energy-preserving finite volume element method for the improved Boussinesq equation, J. Comput. Phys., 270, 58-69 (2014) · Zbl 1349.76405
[44] Wang, D.; Xiao, A.; Yang, W., Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 257, 241-251 (2015) · Zbl 1339.65137
[45] Wang, P.; Huang, C.; Zhao, L., Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306, 231-247 (2016) · Zbl 1382.65260
[46] Xie, J.; Zhang, Z., An effective dissipation-preserving fourth-order difference solver for fractional-in-space nonlinear wave equations, J. Sci. Comput., 79, 1753-1776 (2019) · Zbl 1422.65192
[47] Xie, J.; Zhang, Z., An analysis of implicit conservative difference solver for fractional Klein-Gordon-Zakharov system, Appl. Math. Comput., 348, 153-166 (2019) · Zbl 1429.65202
[48] Xu, Z.; Dong, X.; Yuan, Y., Error estimates in the energy space for a Gautschi-type integrator spectral discretization for the coupled nonlinear Klein-Gordon equations, J. Comput. Appl. Math., 292, 402-416 (2016) · Zbl 1329.65240
[49] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 200-218 (2010) · Zbl 1185.65200
[50] Yang, X.; Zhao, J.; Wang, Q., Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333, 104-127 (2017) · Zbl 1375.82121
[51] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation, SIAM J. Sci. Comput., 36, 2865-2886 (2014) · Zbl 1328.65187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.