×

Calibration of quantitative PCR assays. (English) Zbl 1306.62329

Summary: Quantitative real-time PCR (polymerase chain reaction) assays are increasingly used to measure quantities of nucleic acids in samples. They may be used to provide a high-throughput alternative to more traditional biological assays. In this case, a calibration process may be required to convert the PCR measurements onto a more relevant scale. This is most commonly undertaken using simple linear regression. However, such calibration models are usually unrealistic since they ignore the various sources of variation associated with the PCR and conventional assays. Taking account of these various sources is necessary if the errors associated with predictions based on the calibration model are to be well estimated. In this article, we demonstrate a more complete approach to calibration of quantitative PCR. As an example, we develop a Bayesian calibration model for measuring the quantity of the fungus common bunt (Tilletia caries) on wheat seed, based on our understanding of the properties of the assays. As well as illustrating the steps in developing such a model, we show how the fit of the model might be assessed.

MSC:

62P12 Applications of statistics to environmental and related topics

Software:

BayesDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agresti, A. (2002), Categorical Data Analysis (2nd ed.), New York: Wiley. · Zbl 1018.62002
[2] Aitchison, J., and Dunsmore, I. R. (1975), Statistical Prediction Analysis, Cambridge: Cambridge University Press. · Zbl 0327.62043
[3] Berdal, K. G., and Holst-Jensen, A. (2001), ”Roundup Ready® Soybean Event-Specific Real-Time Quantitative PCR Assay and Estimation of the Practical Detection and Quantification Limits in GMO Analyses,” European Food Research and Technology, 213, 432–438. · doi:10.1007/s002170100403
[4] Bowman, J. C., Abruzzo, G. K., Anderson, J. W., Flattery, A. M., Gill, C. J., Pikounis, V. B., Schmatz, D. M., Liberator, P. A., and Douglas, C. M. (2001), ”Quantitative PCR Assay to Measure Aspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate,” Antimicrobial Agents and Chemotherapy, 45, 3474–3481. · doi:10.1128/AAC.45.12.3474-3481.2001
[5] Brinkman, N. E., Haugland, R. A., Wymer, L. J., Byappanahalli, M., Whitman, R. L., and Vesper, S. J. (2003), ”Evaluation of a Rapid, Quantitative Real-Time PCR Method for Enumeration of Pathogenic Candida Cells in Water,” Applied and Environmental Microbiology, 69, 1775–1782. · doi:10.1128/AEM.69.3.1775-1782.2003
[6] Brooks, S. P., and Gelman, A. (1998), ”General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7, 434–457.
[7] Cockerell, V., Paveley, N. D., Clark, W. S., Thomas, J. E., Anthony, S., McEwan, M., Bates, J., Roberts, A. M. I., Law, J. R., Kenyon, D. M., and Mulholland, V. (2004), ”Cereal Seed Health and Seed Treatment Strategies: Exploiting New Seed Testing Technology to Optimise Seed Health Decisions for Wheat,” Project Report 340, Home-Grown Cereals Authority, London.
[8] Edwards, K. J., Logan, J. M. J., and Saunders, N. A. (2004), Real-time PCR: an Essential Guide, Wymondham: Horizon Bioscience.
[9] Gallina, L., Dal Pozzo, F., Mc Innes, C. J., Cardeti, G., Guercio, A., Battilani, M., Ciulli, S., and Scagliarini, A. (2006), ”A Real Time PCR Assay for the Detections and Quantification of Orf Virus,” Journal of Virological Methods, 134, 140–145. · doi:10.1016/j.jviromet.2005.12.014
[10] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data Analysis (2nd ed.), Boca Raton: Chapman and Hall.
[11] Gelman, A., and Rubin, D. B. (1992), ”Inference From Iterative Simulation Using Multiple Sequences,” Statistical Science, 7, 457–511. · Zbl 1386.65060 · doi:10.1214/ss/1177011136
[12] Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996), Markov Chain Monte Carlo in Practice, London: Chapman and Hall. · Zbl 0832.00018
[13] Kunert, R., Gach, J. S., Vorauer-Uhl, K., Engel, E., and Katinger, H. (2006), ”Validated Method for Quantification of Genetically Modified Organisms in Samples of Maize Flour,” Journal of Agricultural and Food Chemistry, 54, 678–681. · doi:10.1021/jf052257s
[14] Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Cammue, B. P. A., and Thomma, B. P. H. J. (2006), ”Real-Time PCR for Detection and Quantification of Fungal and Oomycete Tomato Pathogens in Plant and Soil Samples,” Plant Science, 171, 155–165. · doi:10.1016/j.plantsci.2006.03.009
[15] McNeil, M., Roberts, A. M. I., Cockerell, V., and Mulholland, V. (2004), ”Real-Time PCR Assay for Quantification of Tilletia caries Contamination of UK Wheat Seed,” Plant Pathology, 53, 741–750. · doi:10.1111/j.1365-3059.2004.01094.x
[16] Mulholland, V., and McEwan, M. (2000), ”PCR-Based Diagnostics of Microdochium nivale and Tilletia tritici Infecting Winter Wheat Seeds,” EPPO Bulletin, 30, 543–547. · doi:10.1111/j.1365-2338.2000.tb00944.x
[17] Mullis, K. B., Ferré, F., and Gibbs, R. A. (eds.) (1994), The Polymerase Chain Reaction, Boston: Birkhäuser.
[18] Raynor, M., Stephenson, S., Walsh, D. C. A., Pittman, K. B., and Dobrovic, A. (2002), ”Optimisation of the RT-PCR Detection of Immunomagnetically Enriched Carcinoma Cells,” BMC Cancer, 2, 14. · doi:10.1186/1471-2407-2-14
[19] Schena, L., Nigro, F., Ippolito, A., and Gallitella, D. (2004), ”Real-Time Quantitative PCR: A New Technology to Detect and Study Phytopathogenic and Antagonistic Fungi,” European Journal of Plant Pathology, 110, 893–908. · doi:10.1007/s10658-004-4842-9
[20] Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2004), Win BUGS User Manual (Version 1.4.1.), Cambridge: Medical Research Council Biostatistics Unit.
[21] Theobald, C. M., and Talbot, M. (2002), ”The Bayesian Choice of Crop Variety and Fertilizer Dose,” Applied Statistics, 51, 23–36. · Zbl 1112.62314
[22] Varma, M., Hester, J. D., Schaefer, F. W., Ware, M.W., and Lindquist, H. D. A. (2003), ”Detection of Cyclospora Cayetanensis using a Quantitative Real-Time PCR Assay,” Journal of Microbiological Methods, 53, 27–36. · doi:10.1016/S0167-7012(02)00209-9
[23] Winton, L. M., Manter, D. K., Stone, J. K., and Hansen, E. A. (2003), ”Comparison of Biochemical, Molecular, and Visual Methods to Quantify Phaeocryptopus gaeumannii in Douglas-Fir Foliage,” Phytopathology, 93, 121–126. · doi:10.1094/PHYTO.2003.93.1.121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.