×

Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. (English) Zbl 1241.35153

Summary: This paper considers the multidimensional active scalar problem of motion of a function \(\rho (x, t)\) by a velocity field obtained by \(v = -\nabla N \ast \rho \), where \(N\) is the Newtonian potential. We prove well-posedness of compactly supported \(L^{\infty} \cap L^{1}\) solutions of possibly mixed sign. These solutions include an important class of solutions that are proportional to characteristic functions on a time-evolving domain. We call these aggregation patches. Whereas positive solutions collapse on themselves in finite time, negative solutions spread and converge toward a self-similar spreading circular patch solution as \(t \rightarrow \infty \). We give a convergence rate that we prove is sharp in 2D. In the case of positive collapsing solutions, we investigate numerically the geometry of patch solutions in 2D and in 3D (axisymmetric). We show that the time evolving domain on which the patch is supported typically collapses on a complex skeleton of codimension one.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q70 PDEs in connection with mechanics of particles and systems of particles
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35B09 Positive solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.anihpc.2010.11.006 · Zbl 1233.49022 · doi:10.1016/j.anihpc.2010.11.006
[2] DOI: 10.1002/cpa.20223 · Zbl 1171.35005 · doi:10.1002/cpa.20223
[3] DOI: 10.1007/BF01212349 · Zbl 0573.76029 · doi:10.1007/BF01212349
[4] DOI: 10.1088/0951-7715/24/6/001 · Zbl 1222.49038 · doi:10.1088/0951-7715/24/6/001
[5] Benedetto D., RAIRO Modél. Math. Anal. Numér. 31 pp 615– · Zbl 0888.73006 · doi:10.1051/m2an/1997310506151
[6] DOI: 10.1007/BF02097055 · Zbl 0771.76014 · doi:10.1007/BF02097055
[7] DOI: 10.1007/s00220-007-0288-1 · Zbl 1132.35392 · doi:10.1007/s00220-007-0288-1
[8] DOI: 10.1137/0519093 · Zbl 0656.76025 · doi:10.1137/0519093
[9] DOI: 10.4310/CMS.2010.v8.n1.a4 · Zbl 1197.35061 · doi:10.4310/CMS.2010.v8.n1.a4
[10] DOI: 10.1088/0951-7715/22/3/009 · Zbl 1194.35053 · doi:10.1088/0951-7715/22/3/009
[11] DOI: 10.1002/cpa.20334 · Zbl 1218.35075 · doi:10.1002/cpa.20334
[12] DOI: 10.3934/cpaa.2010.9.1617 · Zbl 1213.35266 · doi:10.3934/cpaa.2010.9.1617
[13] DOI: 10.1137/S0036139996313447 · Zbl 0940.35035 · doi:10.1137/S0036139996313447
[14] DOI: 10.1002/cpa.20225 · Zbl 1155.35100 · doi:10.1002/cpa.20225
[15] Blanchet A., Electron. J. Differential Equations 44 pp 32–
[16] DOI: 10.1016/j.jde.2005.07.025 · Zbl 1089.45002 · doi:10.1016/j.jde.2005.07.025
[17] DOI: 10.1016/S0362-546X(99)00399-5 · Zbl 1011.92053 · doi:10.1016/S0362-546X(99)00399-5
[18] DOI: 10.1088/0951-7715/12/4/320 · Zbl 0942.35018 · doi:10.1088/0951-7715/12/4/320
[19] DOI: 10.1016/j.nonrwa.2006.04.002 · Zbl 1188.92040 · doi:10.1016/j.nonrwa.2006.04.002
[20] DOI: 10.3934/nhm.2008.3.749 · Zbl 1171.35328 · doi:10.3934/nhm.2008.3.749
[21] DOI: 10.1142/S0218202511005155 · Zbl 1217.35216 · doi:10.1142/S0218202511005155
[22] DOI: 10.1016/0021-9991(90)90121-G · Zbl 0696.76029 · doi:10.1016/0021-9991(90)90121-G
[23] Caffarelli L., Arch. Rational Mech. Anal. pp 1–
[24] DOI: 10.1215/00127094-2010-211 · Zbl 1215.35045 · doi:10.1215/00127094-2010-211
[25] Carrillo J. A., Rev. Mat. Iber. 19 pp 971–
[26] DOI: 10.1007/s00205-005-0386-1 · Zbl 1082.76105 · doi:10.1007/s00205-005-0386-1
[27] Carrillo J., European Congress of Mathematics (Eur. Math. Soc., 2010) pp 3–
[28] Chemin J.-Y., Ann. Sci. École Norm. Sup. (4) 26 pp 517– · Zbl 0779.76011 · doi:10.24033/asens.1679
[29] DOI: 10.1016/j.crma.2004.08.011 · Zbl 1056.35076 · doi:10.1016/j.crma.2004.08.011
[30] DOI: 10.1007/s00220-011-1237-6 · Zbl 1222.35205 · doi:10.1007/s00220-011-1237-6
[31] DOI: 10.1137/110820427 · Zbl 1235.35064 · doi:10.1137/110820427
[32] DOI: 10.1063/1.858802 · Zbl 0766.76012 · doi:10.1063/1.858802
[33] DOI: 10.1016/0021-9991(91)90197-S · Zbl 0726.76029 · doi:10.1016/0021-9991(91)90197-S
[34] DOI: 10.1137/S0036141002408009 · Zbl 1044.35085 · doi:10.1137/S0036141002408009
[35] Dynamics W. E., Phys. Rev. B 50 pp 1126–
[36] DOI: 10.1088/0951-7715/24/10/002 · Zbl 1288.92031 · doi:10.1088/0951-7715/24/10/002
[37] DOI: 10.1109/TAC.2003.809765 · Zbl 1365.92143 · doi:10.1109/TAC.2003.809765
[38] DOI: 10.1016/j.physd.2006.07.010 · Zbl 1125.82021 · doi:10.1016/j.physd.2006.07.010
[39] DOI: 10.1137/090774495 · Zbl 1238.35013 · doi:10.1137/090774495
[40] DOI: 10.1016/0022-5193(70)90092-5 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[41] DOI: 10.1143/JPSJ.50.3517 · doi:10.1143/JPSJ.50.3517
[42] Kirchhoff G., Vorlesungen über Mechanik (1897)
[43] Lamb S. H., Hydrodynamics (1932) · JFM 58.1298.04
[44] DOI: 10.1080/03605300701318955 · Zbl 1132.35088 · doi:10.1080/03605300701318955
[45] DOI: 10.1007/s00220-008-0669-0 · Zbl 1178.35083 · doi:10.1007/s00220-008-0669-0
[46] DOI: 10.1016/j.aim.2008.10.016 · Zbl 1168.35037 · doi:10.1016/j.aim.2008.10.016
[47] DOI: 10.3934/dcds.2010.27.301 · Zbl 1209.35070 · doi:10.3934/dcds.2010.27.301
[48] DOI: 10.1007/s00205-004-0307-8 · Zbl 1116.82025 · doi:10.1007/s00205-004-0307-8
[49] Lin F., Disc. Cont. Dyn. Syst. 6 pp 121–
[50] Mainini E., Boll. Unione Mat. Ital. (9) 2 pp 509–
[51] Majda A. J., Cambridge Texts in Applied Mathematics 27, in: Vorticity and Incompressible Flow (2002)
[52] DOI: 10.1016/j.anihpc.2004.07.002 · Zbl 1070.35036 · doi:10.1016/j.anihpc.2004.07.002
[53] DOI: 10.1007/s00285-003-0209-7 · Zbl 1054.92053 · doi:10.1007/s00285-003-0209-7
[54] DOI: 10.1007/s002850050158 · Zbl 0940.92032 · doi:10.1007/s002850050158
[55] DOI: 10.1007/s00285-004-0279-1 · Zbl 1055.92046 · doi:10.1007/s00285-004-0279-1
[56] DOI: 10.1063/1.864543 · Zbl 0582.76021 · doi:10.1063/1.864543
[57] DOI: 10.1007/s002050100139 · Zbl 1038.82068 · doi:10.1007/s002050100139
[58] Poupaud F., Methods Appl. Anal. 9 pp 533–
[59] Robert R., C. R. Acad. Sci. Sér. I 324 pp 873–
[60] Sandier É., Ann. Sci. École Norm. Sup. (4) 33 pp 561– · Zbl 1174.35552 · doi:10.1016/S0012-9593(00)00122-1
[61] Sandier E., Progress in Nonlinear Differential Equations and their Applications 70, in: Vortices in the Magnetic Ginzburg–Landau Model (2007) · Zbl 1112.35002
[62] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1993) · Zbl 0821.42001
[63] DOI: 10.1137/S0036139903437424 · Zbl 1071.92048 · doi:10.1137/S0036139903437424
[64] DOI: 10.1007/s11538-006-9088-6 · Zbl 1334.92468 · doi:10.1007/s11538-006-9088-6
[65] DOI: 10.1051/m2an:2000127 · Zbl 0981.76098 · doi:10.1051/m2an:2000127
[66] DOI: 10.1016/0041-5553(63)90247-7 · Zbl 0147.44303 · doi:10.1016/0041-5553(63)90247-7
[67] DOI: 10.1016/0021-9991(79)90089-5 · Zbl 0405.76014 · doi:10.1016/0021-9991(79)90089-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.