×

Overcoming limitations of uncalibrated robotics visual servoing by means of sliding mode control and switching monitoring scheme. (English) Zbl 1302.93063

Summary: This paper addresses the visual servoing control problem for robot manipulators without using velocity measurements, and considering a fixed but uncalibrated camera with an optical axis perpendicular to the robot workspace. A novel visual servoing strategy via Sliding Mode Control (SMC) and a monitoring function based switching scheme is presented to deal with the uncertainties in the camera calibration parameters and to remove any restriction on the unknown camera orientation angle. The developed method provides global stability, disturbance rejection properties, and exact output tracking with better transient performance than adaptive controllers. Experimental results illustrate the robustness and practical feasibility of the proposed scheme.

MSC:

93B12 Variable structure systems
93C85 Automated systems (robots, etc.) in control theory
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68T40 Artificial intelligence for robotics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shakernia, Landing an unmanned air vehicle: vision based motion estimation and nonlinear control, Asian J. Control 1 (3) pp 128– (1999) · doi:10.1111/j.1934-6093.1999.tb00014.x
[2] Chang, Reconstruction of 3D contour with an active laser-vision robotic system, Asian J. Control 14 (2) pp 400– (2012) · Zbl 1286.93122 · doi:10.1002/asjc.361
[3] Lin, Vision-based tracking and position estimation of moving targets for unmanned helicopter systems, Asian J. Control 15 (5) pp 1270– (2013)
[4] Hutchinson, A tutorial on visual servo control, IEEE Trans. Robot. Autom. 12 (5) pp 651– (1996) · doi:10.1109/70.538972
[5] Chaumette, Visual servo control-Part I: Basic approaches, IEEE Robot. Autom. Mag. 13 (4) pp 82– (2006) · doi:10.1109/MRA.2006.250573
[6] Koivo, Real-time vision feedback for servoing of a robotic manipulator with self-tuning controller, IEEE Trans. Syst. Man Cybern. 21 (1) pp 134– (1991) · doi:10.1109/21.101144
[7] Papanikolopoulos, Adaptive robotic visual tracking: Theory and experiments, IEEE Trans. Autom. Control 38 (3) pp 429– (1993) · Zbl 0800.93839 · doi:10.1109/9.210141
[8] Dixon, Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system, IEEE Trans. Syst. Man Cybern. Part B - Cybern 31 (3) pp 341– (2001) · doi:10.1109/3477.931519
[9] Mariottini, Image-based visual servoing for nonholonomic mobile robots using epipolar geometry, IEEE Trans. Robot. 23 (1) pp 87– (2007) · doi:10.1109/TRO.2006.886842
[10] Kelly, Robust asymptotically stable visual servoing of planar robots, IEEE Trans. Robot. Automation 12 (5) pp 759– (1996) · doi:10.1109/70.538980
[11] Bishop, Adaptive calibration and control of 2D monocular visual servo systems, Control Eng. Practice 7 (3) pp 423– (1999) · doi:10.1016/S0967-0661(98)00160-9
[12] Chaumette, Visual servo control, Part II: advanced approaches, IEEE Robot. Autom. Mag. 14 (1) pp 109– (2007) · doi:10.1109/MRA.2007.339609
[13] Conticelli, Nonlinear controllability and stability analysis of adaptive image-based systems, IEEE Trans. Robot. Autom. 17 (2) pp 208– (2001) · Zbl 1239.93016 · doi:10.1109/70.928567
[14] Astolfi, Two solutions to the adaptive visual servoing problem, IEEE Trans. Robot. Autom. 18 (3) pp 387– (2002) · doi:10.1109/TRA.2002.1019475
[15] Zergeroglu, Vision-based nonlinear tracking controllers with uncertain robot-camera parameters, IEEE ASME Trans. Mechatron. 6 (3) pp 322– (2001) · doi:10.1109/3516.951370
[16] Zergeroglu, Robust visual-servo control of robot manipulators in the presence of uncertainty, J. Robot. Syst. 20 (2) pp 93– (2003) · Zbl 1048.68107 · doi:10.1002/rob.10071
[17] Hsu, Lyapunov/passivity-based adaptive control of relative degree two MIMO systems with an application to visual servoing, IEEE Trans. Autom. Control. 52 (2) pp 364– (2007) · Zbl 1366.93291 · doi:10.1109/TAC.2006.890381
[18] Leite, Hybrid adaptive vision-force control for robot manipulators interacting with unknown surfaces, Int. J. Robot. Res. 28 (7) pp 911– (2009) · Zbl 05745136 · doi:10.1177/0278364909101932
[19] Lizarralde, Adaptive visual servoing scheme free of image velocity measurement for uncertain robot manipulators, Automatica 49 (5) pp 1304– (2013) · Zbl 1319.93055 · doi:10.1016/j.automatica.2013.01.047
[20] Ortega, Immersion and invariance adaptive control of linear multivariable systems, Syst. Control Lett. 49 pp 37– (2003) · Zbl 1157.93429 · doi:10.1016/S0167-6911(02)00341-9
[21] Zachi, Dynamic control of uncertain manipulators through immersion and invariance adaptive visual servoing, Int. J. Robot. Res. 25 (11) pp 1149– (2006) · Zbl 05743948 · doi:10.1177/0278364906072039
[22] Edwards, Sliding Mode Control: Theory and Applications (1998)
[23] Utkin, Sliding Mode Control in Electromechanical Systems (1999)
[24] Morel, Robust visual servoing: bounding the task function tracking errors, IEEE Trans. Control Syst. Technol. 13 (6) pp 998– (2005) · doi:10.1109/TCST.2005.857409
[25] Queiroz, Design and stability analysis of a variable structure adaptive backstepping controller, Asian J. Control 14 (3) pp 641– (2012) · Zbl 1303.93056 · doi:10.1002/asjc.364
[26] Levant, Higher-order sliding modes, differentiation and output-feedback control, Int. J. Control 76 (9) pp 924– (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[27] Perez, On output regulation of direct visual servoing via velocity fields, Int. J. Control 82 (4) pp 679– (2009) · Zbl 1162.93386 · doi:10.1080/00207170802225922
[28] Su, A simple PID control for asymptotic visual regulation of robot manipulators, Int. J. Robust Nonlinear Control 21 (13) pp 1525– (2011) · Zbl 1227.93086 · doi:10.1002/rnc.1648
[29] Garrido, Visual control of planar parallel robots without using velocity measurements, J. Intell. Robot. Syst.: Theory and Applicat. 66 (1-2) pp 111– (2012) · Zbl 06071053 · doi:10.1007/s10846-011-9609-x
[30] Dean-León, Visual servoing for constrained planar robots subject to complex friction, IEEE ASME Trans. Mechatron. 11 (4) pp 389– (2006) · doi:10.1109/TMECH.2006.878547
[31] Malagari, Globally exponential controller/observer for tracking in robots without velocity measurement, Asian J. Control 14 (2) pp 309– (2012) · Zbl 1286.93124 · doi:10.1002/asjc.297
[32] Janabi-Sharifi, Comparison of basic visual servoing methods, IEEE ASME Trans. Mechatron. 16 (5) pp 967– (2011) · doi:10.1109/TMECH.2010.2063710
[33] Wang, Visual servoing of robots with uncalibrated robot and camera parameters, Mechatronics 22 (6) pp 661– (2012) · doi:10.1016/j.mechatronics.2011.05.007
[34] Cheah, Adaptive vision and force tracking control for robots with constraint uncertainty, IEEE ASME Trans. Mechatron. 15 (3) pp 389– (2010) · doi:10.1109/TMECH.2009.2027115
[35] Siciliano, Robotics: Modelling, Planning and Control (2009) · doi:10.1007/978-1-84628-642-1
[36] Hespanha, Overcoming the limitations of adaptive control by means of logic-based switching, Syst. Control Lett. 49 (15) pp 49– (2003) · Zbl 1157.93440 · doi:10.1016/S0167-6911(02)00342-0
[37] Khalil, Nonlinear Systems (2002)
[38] Filippov, Differential equations with discontinuous right-hand side, Trans. Am. Math. Soc. 42 (2) pp 199– (1964) · Zbl 0148.33002 · doi:10.1090/trans2/042/13
[39] Hsu , L. J. P. V. S. Cunha R. R. Costa F. Lizarralde X. Yu J. X. Xu Multivariable Output-Feedback Sliding Mode Control 274 283 313 2002 · Zbl 1017.93026
[40] Oliveira , T. R. A. J. Peixoto A. C. Leite L. Hsu Sliding mode control of uncertain multivariable nonlinear systems applied to uncalibrated robotics visual servoing IEEE American Control Conference 71 76 2009
[41] Hsu, Model-reference output-feedback sliding mode controller for a class of multivariable nonlinear systems, Asian J. Control 5 (4) pp 543– (2003) · doi:10.1111/j.1934-6093.2003.tb00171.x
[42] Baida, Unit sliding mode control in continuous and discrete-time systems, Int. J. Control 57 (5) pp 1125– (1993) · Zbl 0772.93052 · doi:10.1080/00207179308934434
[43] Tao , G. P. A. Ioannou A MRAC for multivariable plants with zero residual tracking error IEEE Conference on Decision and Control 1597 1600 1989
[44] Chien, A robust MRAC using variable structure design for multivariable plants, Automatica 32 (6) pp 833– (1996) · Zbl 0864.93069 · doi:10.1016/0005-1098(96)00009-X
[45] Martensson, The unmixing problem, IMA J. Math. Control Inf. 8 pp 367– (1991) · Zbl 0763.93044 · doi:10.1093/imamci/8.4.367
[46] Ryan, Adaptive stabilization of multi-input nonlinear systems, Int. J. Robust Nonlinear Control 3 (2) pp 169– (1993) · Zbl 0792.93108 · doi:10.1002/rnc.4590030208
[47] Yan, A variable structure model reference robust control without a prior knowledge of high frequency gain sign, Automatica 44 (4) pp 1036– (2008) · Zbl 1283.93068 · doi:10.1016/j.automatica.2007.08.011
[48] Oliveira, Control of uncertain nonlinear systems with arbitrary relative degree and unknown control direction using sliding modes, Int. J. Adaptive Control Signal Process. 21 (8-9) pp 692– (2007) · Zbl 1128.93022 · doi:10.1002/acs.978
[49] Moreno-Valenzuela, Robust saturated PI joint velocity control for robot manipulators, Asian J. Control 15 (1) pp 64– (2013) · Zbl 1327.93283 · doi:10.1002/asjc.586
[50] Leite, 13th Annual Tcl/Tk Conference pp 1– (2006)
[51] Haralick, Computer and Robot Vision (1993)
[52] Spong, Robot Dynamics and Control (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.