×

Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder. (English) Zbl 1390.76897

Summary: The mixed convective flow and heat transfer of nanofluids past a rotating cylinder placed in a uniform cross stream is investigated via SUPG (streamline upwind Petrov-Galerkin) based finite element method. Nano sized copper (Cu) particles suspended in water are used with Prandtl number \((\mathrm{Pr}) = 6.9\). The computations are carried out at a representative Reynolds number \((\mathrm{Re})\) of 100. The dimensionless cylinder rotation rate \((\alpha)\) is varied between 0 and 2. The range of nanoparticle volume fractions \((\phi)\) considered is \(0 \leq \phi \leq 5\%\). Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number \((\mathrm{Ri})\) as 0.5 and 1.0. The thermophysical properties of nanofluid is predicted using a model which considers the fundamentals of interparticle interaction kinetics according to the details of agglomeration-deagglomeration of nanoparticles, variations in the effective particulate dimensions and agglomerate size \((n)\), as well as the volume fractions of the particulate system. Increase in cylinder rotation and nanoparticle agglomeration shows suppression of vortex shedding. Completely steady solution is obtained at \(\alpha = 2\). At \(\mathrm{Ri} = 0.5\), \(\phi = 5\%\), and \(n = 5\), vortex shedding disappears and the flow achieves a steady state. A von Karman street is seen at \(\alpha = 1.5\), for \(n > 1\) and \(\phi \leq 3\%\). For \(\phi = 4\%\) and \(5\%\), vortex shedding ceases at \(n = 5\). Characterisation of vortex shedding by POD (proper orthogonal decomposition) shows that increase in the values of \(n\) institutes coherence in the wake vortical structures. The average Nusselt number decreases with increasing \(\alpha\) and increases with increasing \(n\). At \(n = 5\), a significant enhancement in heat transfer is seen.

MSC:

76T20 Suspensions
76U05 General theory of rotating fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bers, A., Basic plasma physics I, (Rosenbluth, M. N.; Sagdeev, R. Z., Handbook of plasma physics, vol. 1, (1983), North Holland), chap. 3.2
[2] Triantafyllou, G. S.; Triantafyllou, M. S.; Chryssostomidis, C., On the formation of vortex streets behind stationary cylinders, J. Fluid Mech., 170, 461-477, (1986)
[3] Prandtl, L., The Magnus effect and windpowered ships, Naturwissenschaften, 13, 93-108, (1925)
[4] Badr, H. M.; Dennis, S. C.R., Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder, J. Fluid Mech., 158, 447-488, (1985) · Zbl 0582.76035
[5] Badr, H. M.; Coutanceau, M.; Dennis, S. C.R.; Menard, C., Unsteady flow past a rotating cylinder at Reynolds numbers 103 and 104, J. Fluid Mech., 220, 459-484, (1990)
[6] Kang, S.; Choi, H., Laminar flow past a rotating cylinder, Phys. Fluids, 11, 3312-3320, (1999) · Zbl 1149.76423
[7] Ingham, D. B.; Tang, T., A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers, J. Comput. Phys, 87, 91-107, (1990) · Zbl 0687.76037
[8] Mittal, S.; Kumar, B., Flow past a rotating cylinder, J. Fluid Mech, 476, 303-334, (2003) · Zbl 1163.76442
[9] El Akoury, R.; Braza, M.; Perrin, M.; Harran, G.; Hoarau, Y., The three-dimensional transition in the flow around a rotating cylinder, J. Fluid Mech., 607, 1-11, (2008) · Zbl 1145.76370
[10] Stojkovic, D.; Breuer, M.; Durst, F., Effect of high rotation rates on the laminar flow around a circular cylinder, Phys. Fluids, 14, 3160-3178, (2002) · Zbl 1185.76357
[11] Stojkovic, D.; Schon, P.; Breuer, M.; Durst, F., On the new vortex shedding mode past a rotating circular cylinder, Phys. Fluids, 15, 1257-1260, (2003) · Zbl 1186.76500
[12] Badr, H. M.; Dennis, S. C.R., Laminar forced convection from a rotating cylinder, Int. J. Heat Mass Transfer, 28, 253-264, (1985) · Zbl 0559.76082
[13] Nguyen, H. D.; Paik, S.; Douglass, R. W., Unsteady mixed convection about a rotating circular cylinder with small fluctuations in the free-stream velocity, Int. J. Heat Mass Transfer, 39, 511-525, (1996) · Zbl 0964.76526
[14] Farouk, B.; Ball, K. S., Convective flows around a rotating isothermal cylinder, Int. J. Heat Mass Transfer, 28, 1921-1935, (1985)
[15] A/K Abu-Hijleh, B.; Heilen, W. N., Correlation for laminar mixed convection from a rotating cylinder, Int. Commun. Heat Mass Transfer, 25, 875-884, (1998)
[16] Yan, Y. Y.; Zu, Y. Q., Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach, Int. J. Heat Mass Transfer, 51, 2519-2536, (2008) · Zbl 1144.80359
[17] Ma, H.; Hao, S.; Wang, M.; Yang, G.; Wang, F., Convective mass transfer from a horizontal rotating large-diameter cylinder, Int. J. Heat Mass Transfer, 55, 1419-1422, (2012)
[18] Chhabra, R. P.; Rami, K.; Uhlherr, P. H.T., Drag on cylinders in shear thinning viscoelastic liquids, Chem. Eng. Sci., 56, 2221-2227, (2001)
[19] Sivakumar, P.; Bharti, R. P.; Chhabra, R. P., Effect of power-law index on critical parameters for power-law flow across an unconfined circular cylinder, Chem. Eng. Sci., 61, 6035-6046, (2006)
[20] Bharti, R. P.; Chhabra, R. P.; Eswaran, V., Effect of blockage on heat transfer from a cylinder to power law liquids, Chem. Eng. Sci., 62, 4729-4741, (2007) · Zbl 1124.80308
[21] Choi, S. U.S., Enhancing thermal conductivity of fluid with nanoparticles, (Siginer, D. A.; Wang, H. P., Developments and applications of non-Newtonian flows, FED-V.231/MD-V.66, (1995), ASME New York), 99
[22] Zhou, D. W., Heat transfer enhancement of copper nanofluid with acoustic cavitations, Int. J. Heat Mass Transfer, 47, 3109-3117, (2004)
[23] Lee, S.; Choi, S. U.S.; Li, S.; Eastman, J. A., Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280-289, (1999)
[24] Wasan, D. T.; Nikolov, A. D., Spreading of nanofluids on solids, Nature (London), 423, 156-159, (2003)
[25] Eastman, J. A.; Phillpot, S. R.; Choi, S. U.S.; Keblinski, P., Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219-246, (2004)
[26] Wang, X. W.; Choi, S. U.S.; Xu, X. F., Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer, 13, 474-480, (1999)
[27] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567-574, (2003)
[28] Allain, C.; Cloitre, M.; Wafra, M., Aggregation and sedimentation in colloidal suspensions, Phy. Rev. Lett, 74, 1478-1481, (1995)
[29] Allouni, Z. E.; Cimpan, M. R.; Hol, P. J.; Skodvin, T.; Gjerdet, N. R., Agglomeration and sedimentation of tio_{2} nanoparticles in cell culture medium, Colloids Surf. B: Biointerf., 68, 83-87, (2009)
[30] Prasher, R.; Song, D.; Wang, J.; Phelan, P., Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett, 89, (2006)
[31] Lee, J. H.; Hwang, K. S.; Jang, S. P.; Lee, B. H.; Kim, J. H.; Choi, S. U.S.; Choi, C. J., Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of al_{2}O_{3} nanoparticles, Int. J. Heat Mass Transfer, 51, 2651-2656, (2008)
[32] Ganguly, S.; Chakraborty, S., Effective viscosity of nanoscale colloidal suspensions, J. Appl. Phys., 106, (2009)
[33] Buongiorno, J., Convective transport in nanofluids, ASME J Heat Transfer, 128, 240-250, (2006)
[34] Kakac, S.; Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer, 52, 3187-3196, (2009) · Zbl 1167.80338
[35] Khanafer, K.; Vafai, K.; Lightstone, M., Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639-3653, (2003) · Zbl 1042.76586
[36] Putra, N.; Roetzel, W.; Das, S. K., Natural convection of nano-fluids, Heat Mass Transfer, 39, 775-784, (2003)
[37] Kim, J.; Kang, Y. T.; Choi, C. K., Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, 16, 2395-2401, (2004) · Zbl 1186.76282
[38] Ho, C. J.; Chen, M. W.; Li, Z. W., Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transfer, 51, 4506-4516, (2008) · Zbl 1144.80317
[39] Nield, D. A.; Kuznetsov, A. V., The cheng-minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer, 52, 5792-5795, (2009) · Zbl 1177.80046
[40] Cheng, P.; Minkowycz, W. J., Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res, 82, 2040-2044, (1977)
[41] Khan, W. A.; Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer, 53, 2477-2483, (2010) · Zbl 1190.80017
[42] Abu-Nada, E.; Ziyad, K.; Saleh, M.; Ali, Y., Heat transfer enhancement in combined convection around a horizontal cylinder using nanofluids, J. Heat Transfer, 130, (2008)
[43] Sarkar, S.; Ganguly, S.; Biswas, G., Mixed convective heat transfer of nanofluids past a circular cylinder in cross flow in unsteady regime, Int. J. Heat Mass Transfer, 55, 4783-4799, (2012)
[44] Valipour, M. S.; Ghadi, A. Z., Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid, Int. Commun. Heat Mass Transfer, 38, 1296-1304, (2011)
[45] Sarkar, S.; Ganguly, S.; Dalal, A., Analysis of entropy generation during mixed convective heat transfer of nanofluids past a rotating circular cylinder, ASME-J. Heat Transfer, 136, (2014)
[46] Sarkar, S.; Ganguly, S.; Dalal, A., Analysis of entropy generation during mixed convective heat transfer of nanofluids past a square cylinder in vertically upward flow, ASME-J. Heat Transfer, 134, (2012)
[47] Sarkar, S.; Ganguly, S.; Dalal, A., Buoyancy driven flow and heat transfer of nanofluids past a square cylinder in vertically upward flow, Int. J. Heat Mass Transfer, 59, 433-450, (2013)
[48] Maji, P. K.; Biswas, G., Analysis of flow in the spiral casing using a streamline upwinding Petrov-Galerkin method, Int. J. Numer. Methods Eng., 45, 147-174, (1999) · Zbl 0954.76046
[49] Gregory, J., Particle aggregation: modeling and measurement, nanoparticles in solid and solutions, (Fendler, J. H.; Dekany, I., (1996), Kluwer Boston), 203
[50] Ohshima, H.; Furusawa, K., Electrical phenomena at interfaces: fundamentals, measurements, and applications, (1998), Marcel Dekker Inc New York, 2nd ed
[51] Prasher, R.; Phelan, P. E.; Bhattacharya, P., Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Lett, 6, 1529-1534, (2006)
[52] Eapen, J.; Williams, W. C.; Buongiorno, J.; Hu, L.; Yip, S.; Rusconi, R.; Piazza, R., Mean-field versus microconvection effects in nanofluid thermal conduction, Phys. Rev. Lett, 99, (2007)
[53] Tiwari, R. K.; Das, M. K., Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 50, 2002-2018, (2007) · Zbl 1124.80371
[54] Oztop, H. F.; Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326-1336, (2008)
[55] Hunter, R. J., Foundation of colloid science, (2001), Oxford University Press New York
[56] Einstein, A., Eine neue bestimmung der moleküldimensionen, Ann. Phys., 324, 289-306, (1906) · JFM 37.0811.01
[57] Brinkman, H. C., The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571-581, (1952)
[58] Santra, A. K.; Sen, S.; Chakraborty, N., Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid, Int. J. Therm. Sci., 47, 1113-1122, (2008)
[59] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2188, (1965) · Zbl 1180.76043
[60] Brooks, A. N.; Hughes, T. J.R., Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 199-259, (1982) · Zbl 0497.76041
[61] Biswas, G.; Sarkar, S., Effect of thermal buoyancy on vortex shedding past a circular cylinder in cross flow at low Reynolds numbers, Int. J. Heat Mass Transfer, 52, 1897-1912, (2009) · Zbl 1157.80310
[62] Senthil Kumar, N.; Biswas, G., A finite element study of the onset of vortex shedding in a flow past two-dimensional circular cylinder, Prog. Comput. Fluid Dynam, 8, 288-298, (2008) · Zbl 1152.76346
[63] Sarkar, S.; Dalal, A.; Biswas, G., Mixed convective heat transfer from two identical square cylinders in cross flow at re=100, Int. J. Heat Mass Transfer, 53, 2628-2642, (2010) · Zbl 1191.80027
[64] Sarkar, S.; Dalal, A.; Biswas, G., Unsteady wake dynamics and heat transfer in forced and mixed convection past a circular cylinder in cross flow for high Prandtl numbers, Int. J. Heat Mass Transfer, 54, 3536-3551, (2011) · Zbl 1219.80086
[65] Arul Prakash, K.; Biswas, G.; Rathish Kumar, B. V., Thermal hydraulics of the spallation target module of an accelerator driven sub-critical system: a numerical study, Int. J. Heat Mass Transfer, 49, 4633-4652, (2006) · Zbl 1113.80316
[66] Sirovich, S., Turbulence and the dynamics of coherent structures, Parts I, II and III. Q. Appl. Maths, 45, 561, (1987) · Zbl 0676.76047
[67] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, coherent structures dynamical systems and symmetry, (1996), Cambridge University Press · Zbl 0890.76001
[68] Sengupta, T. K.; Dey, S., Proper orthogonal decomposition of direct numerical simulation data of by-pass transition, Comput. Struct, 82, 2693-2703, (2004)
[69] Dipankar, A.; Sengupta, T. K.; Talla, S. B., Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers, J. Fluid Mech., 573, 171-190, (2007) · Zbl 1133.76311
[70] Sengupta, T. K.; Suman, V. K.; Singh, N., Solving Navier-Stokes equation for flow past cylinders using single-block structured and overset grids, J. Comput. Phys, 229, 178-199, (2010) · Zbl 1381.76202
[71] Deane, A. E.; Kevrekidis, I. G.; Karniadakis, G. E.; Orszag, S. A., Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders, Phys. Fluids A, 3, 2337-2354, (1991) · Zbl 0746.76021
[72] Diaz, F.; Gavalda, J.; Kawall, J. G.; Keller, J. F.; Giralt, F., Vortex shedding from a spinning cylinder, Phys. Fluids, 26, 3454-3460, (1983)
[73] Kieft, R. N.; Rindt, C. C.M.; Van Steenhoven, A. A.; van Heijst, G. J.F., On the wake structure behind a heated horizontal cylinder in cross-flow, J. Fluid Mech., 486, 189-211, (2003) · Zbl 1054.76027
[74] Sarkar, S.; Ganguly, S., Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field, Microfluid. Nanofluid., 18, 623-636, (2015)
[75] Ganguly, S.; Sarkar, S.; Hota, T. K.; Mishra, M., Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field,, Chem. Eng. Sci., 126, 10-21, (2015)
[76] Kays, W. M.; Biorklund, I. S., Heat transfer from a rotating cylinder with and without crossflow, Trans. Am. Sot. Mech. Eng., 80, 70-78, (1958)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.