×

An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit. (English) Zbl 1163.76062

Summary: This paper deals with the modeling of a plasma in the quasineutral limit using the two-fluid Euler-Poisson system. In this limit, explicit numerical schemes suffer from severe numerical constraints related to the small Debye length and large plasma frequency. Here, we propose an implicit scheme which reduces to a scheme for the quasineutral Euler model in the quasineutral limit. Such a property is referred to as “asymptotic preservation”. One of the distinctive features of this scheme is that it has a comparable numerical cost to that of an explicit scheme: simply the Poisson equation is replaced by a different (but formally equivalent) elliptic problem. We present numerical simulations for two different one-dimensional test-cases. They confirm the expected stability of the scheme in the quasineutral limit. They also show that this scheme has some accuracy problems in the limit of small electron to ion mass ratio in reproducing the correct electron velocity. But this problem is already present in the results of the classical algorithm. Numerical simulations are also performed for a two-dimensional problem of a plasma expansion in vacuum between two electrodes.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D10 Statistical mechanics of plasmas
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 594 (2001) · Zbl 1033.76029
[2] (Boxman, R. L.; Martin, P. J.; Sanders, D. M., Handbook of Vacuum Arcs Science and Technology. Handbook of Vacuum Arcs Science and Technology, Fundamentals and Applications (1995), Noyes Publications: Noyes Publications Park Ridge)
[3] Brackbill, J. U.; Forslund, D. W., An implicit method for electromagnetic plasma simulation in two dimensions, J. Comput. Phys., 46, 271 (1982) · Zbl 0489.76127
[4] Catani, J.-P.; Payan, D., Electrostatic behaviour of materials in a charging space environment, (Proceedings of the 9th International Symposium on Materials in a Space Environment, 16-20 June 2003, Noordwijk, The Netherlands (2003), ESA Publications Division), 3
[5] Chen, F. F., Introduction to Plasma Physics and Controlled Fusion, vol. 1 (1974), Plenum Press
[6] Cho, M.; Hastings, D. E., Dielectric charging process and arcing rates of high voltage solar arrays, J. Spacecraft Rockets, 28, 698 (1990)
[7] Choe, H.-H.; Yoon, N. S.; Kim, S. S.; Choi, D.-I., A new unconditionally stable algorithm for steady-state fluid simulation of high density plasma discharge, J. Comput. Phys., 170, 550 (2001) · Zbl 1012.76064
[8] Cohen, B. I.; Langdon, A. B.; Friedman, A., Implicit time integration for plasma simulation, J. Comput. Phys., 46, 15 (1982) · Zbl 0495.76105
[9] Colella, Ph.; Dorr, M. R.; Wake, D. D., A conservative finite difference method for the numerical solution of plasma fluid equations, J. Comput. Phys., 149, 168 (1999) · Zbl 0930.76053
[10] Collins, J. P.; Colella, P.; Glaz, H. M., An implicit-explicit Eulerian Godunov scheme for compressible flow, J. Comput. Phys., 116, 195 (1995) · Zbl 0817.76038
[11] Cordier, S.; Grenier, E., Quasineutral limit of Euler-Poisson system arising from plasma physics, Commun. Partial Differen. Equat., 25, 1099 (2000) · Zbl 0978.82086
[12] Cordier, S.; Peng, Y.-J., Système Euler-Poisson non linéaire. Existence globale de solutions faibles entropiques, RAIRO Modél. Math. Anal. Numér., 32, 1 (1998) · Zbl 0935.35119
[13] Crispel, P.; Degond, P.; Parzani, C.; Vignal, M.-H., Trois formulations d’un modéle de plasma quasi-neutre avec courant non-nul, C.R. Acad. Sci. Paris, 338, 327 (2004) · Zbl 1035.76061
[14] Crispel, P.; Degond, P.; Vignal, M-H., An asymptotically stable discretization for the Euler-Poisson system in the quasineutral limit, C.R. Acad. Sci. Paris, Ser. I, 341, 323 (2005) · Zbl 1203.76179
[15] Crispel, P.; Degond, P.; Vignal, M.-H., Quasi-neutral fluid models for current carrying plasmas, J. Comput. Phys., 205, 408 (2005) · Zbl 1087.82022
[16] Degond, P., The Child-Langmuir law in the kinetic theory of charged-particles. Part 1, Electron flows in vacuum, (Perthame, B., Advances in Kinetic Theory (1994), World Scientific: World Scientific Singapore), 3 · Zbl 0863.76091
[17] Degond, P.; Lucquin-Desreux, B., Transport coefficients of plasmas and disparate mass binary gases, Trans. Theory Stat. Phys., 25, 595 (1996) · Zbl 0909.35108
[18] Degond, P.; Parzani, C.; Vignal, M.-H., Un modéle d’expansion de plasma dans le vide, C.R. Acad. Sci. Paris Ser. I, 335, 399 (2002) · Zbl 1140.76499
[19] Degond, P.; Parzani, C.; Vignal, M.-H., A one-dimensional model of plasma expansion, Math. Comput. Modell., 38, 1093 (2003) · Zbl 1047.76127
[20] Degond, P.; Parzani, C.; Vignal, M.-H., Plasma expansion in vacuum: modeling the breakdown of quasineutrality, SIAM Multiscale Model. Simul., 2, 158 (2003)
[21] Degond, P.; Parzani, C.; Vignal, M.-H., On plasma expansion in vacuum, (Colli, P.; Verdi, C.; Visintin, A., Free Boundary Problems: Theory and Applications. Free Boundary Problems: Theory and Applications, International Series of Numerical Mathematics, vol. 147 (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel), 103 · Zbl 1045.35053
[22] Degond, P.; Peyrard, P.-F.; Russo, G.; Villedieu, Ph., Polynomial upwind schemes for hyperbolic systems, C.R. Acad. Sci. Paris Ser. I, 328, 479 (1999)
[23] Degond, P.; Raviart, P.-A., An asymptotic analysis of the one-dimensional Vlasov Poisson system: the Child-Langmuir law, Asymptotic Anal., 4, 187 (1991) · Zbl 0840.35082
[24] P. Degond, R. Talaalout, M.-H. Vignal, Electron transport and secondary emission in a surface of a solar cell, in: Proceedings of Multipactor, RF and DC corona and passive intermodulation in space RF hardware, ESTEC, Noordwijk, The Netherlands, 4-6 September 2000.; P. Degond, R. Talaalout, M.-H. Vignal, Electron transport and secondary emission in a surface of a solar cell, in: Proceedings of Multipactor, RF and DC corona and passive intermodulation in space RF hardware, ESTEC, Noordwijk, The Netherlands, 4-6 September 2000.
[25] DiPeso, G.; Hewett, D. W.; Simonson, G. F., Extension of the streamlined Darwin model to quasineutral plasmas, J. Comput. Phys., 111, 237 (1994) · Zbl 0798.76100
[26] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. VII (2000), North-Holland), 713 · Zbl 0981.65095
[27] Fabre, Sylvie, Stability analysis of the Euler-Poisson equations, J. Comput. Phys., 101, 445 (1992) · Zbl 0758.65077
[28] Franklin, R. N.; Ockendon, J. R., Asymptotic matching of plasma and sheath in an active low pressure discharge, J. Plasma Phys., 4, 3521-3528 (1970)
[29] Friedman, A.; Parker, S. E.; Ray, S. L.; Birdsall, C. K., Multi-scale particle-in-cell plasma simulation, J. Comput. Phys., 96, 54 (1991)
[30] Alex Friedman, Implicit multiscale PIC and related topics, in: Workshop on Multiscale Processes in Fusion Plasmas, IPAM, UCLA, 10-14 January 2005. Available from: <http://www.ipam.ucla.edu/publications/fus2005/fus2005_5425.pdf>; Alex Friedman, Implicit multiscale PIC and related topics, in: Workshop on Multiscale Processes in Fusion Plasmas, IPAM, UCLA, 10-14 January 2005. Available from: <http://www.ipam.ucla.edu/publications/fus2005/fus2005_5425.pdf>
[31] Gibbons, M. R.; Hewett, D. W., The Darwin direct implicit particle-in-cell (DADIPIC) method for simulation of low frequency plasma phenomena, J. Comput. Phys., 120, 231 (1995) · Zbl 0841.76066
[32] Gibbons, M. R.; Hewett, D. W., Characterization of the Darwin direct implicit particle-in-cell method and resulting guidelines for operation, J. Comput. Phys., 130, 54 (1997) · Zbl 0870.76056
[33] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), Springer · Zbl 1063.65080
[34] Ha, S. Y.; Slemrod, M., Global existence of plasma ion sheaths and their dynamics, Commun. Math. Phys., 238, 149 (2003) · Zbl 1055.35085
[35] Hewett, D. W.; Langdon, A. B., Electromagnetic direct implicit plasma simulation, J. Comput. Phys., 72, 121 (1987) · Zbl 0636.76126
[36] Hewett, D. W.; Nielson, C. W., A multidimensional quasineutral plasma simulation model, J. Comput. Phys., 29, 219 (1978) · Zbl 0388.76108
[37] Humphries, S., Modeling ion extraction from a free-plasma surface with a flexible conformal mesh, J. Comput. Phys., 204, 587 (2005) · Zbl 1267.76136
[38] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21, 441 (1999) · Zbl 0947.82008
[39] Joyce, G.; Lampe, M.; Slinker, S. P.; Manheimer, W. M., Electrostatic particle-in-cell simulation technique for quasineutral plasma, J. Comput. Phys., 138, 540 (1997) · Zbl 0911.76060
[40] Karimabadi, H.; Driscoll, J.; Omelchenko, Y. A.; Omidi, N., A new asynchronous methodology for modeling of physical systems: breaking the curse of courant condition, J. Comput. Phys., 205, 755 (2005) · Zbl 1087.76538
[41] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low mach number asymptotics I: One-dimensional flow, J. Comput. Phys., 121, 213 (1995) · Zbl 0842.76053
[42] Knoll, D. A., An improved convection scheme applied to recombining divertor plasma flows, J. Comput. Phys., 142, 473 (1998) · Zbl 0932.76044
[43] Krall, N. A.; Trivelpiece, A. W., Principles of Plasma Physics (1986), San Francisco Press
[44] Langdon, A. B.; Barnes, D. C., Direct implicit plasma simulations, (Multiple Time Scales (1985), Academic Press)
[45] Langdon, A. B.; Cohen, B. I.; Friedman, A., Direct implicit large time-step particle simulation of plasmas, J. Comput. Phys., 51, 107 (1983) · Zbl 0572.76123
[46] Lapenta, G.; Iinoya, F.; Brackbill, J. U., Particle-in-cell simulations of glow discharges in complex geometries, IEEE Trans. Plasma Sci., 23, 769 (1995)
[47] Lyster, P. M.; Leboeuf, J.-N., A fluid-ion and particle-electron model for low-frequency plasma instabilities, J. Comput. Phys., 102, 180 (1992) · Zbl 0775.76118
[48] Mankofsky, A.; Sudan, R. N.; Denavit, J., Hybrid simulation of ion beams in background plasma, J. Comput. Phys., 70, 89 (1987) · Zbl 0621.76128
[49] Marcati, P.; Natalini, R., Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Roy. Soc. Edinburgh Sec. A, 125, 115 (1995) · Zbl 0831.35157
[50] Mason, R. J., Implicit moment particle simulation of plasmas, J. Comput. Phys., 41, 233 (1981) · Zbl 0469.76121
[51] Mason, R. J., Implicit moment PIC-hybrid simulation of collisional plasmas, J. Comput. Phys., 51, 484 (1983) · Zbl 0572.76124
[52] Mason, R. J., Hybrid and collisional implicit plasma simulation models, (Multiple Time Scales (1985), Academic Press) · Zbl 0604.76086
[53] Mason, R. J., An electromagnetic field algorithm for 2D implicit plasma simulation, J. Comput. Phys., 71, 429 (1987) · Zbl 0679.76117
[54] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408 (1990) · Zbl 0697.65068
[55] Osher, S.; Fedkiw, R., Level set methods: an overview and some recent results, J. Comput. Phys., 169, 463 (2001) · Zbl 0988.65093
[56] Poupaud, F.; Rascle, M.; Vila, J. P., Global solutions to the isothermal Euler-Poisson system with arbitrary large data, J. Differen. Equat., 123, 93 (1995) · Zbl 0845.35123
[57] Rambo, P. W.; Denavit, J., Fluid and field algorithms for time-implicit plasma simulation, J. Comput. Phys., 92, 185 (1991) · Zbl 0712.76073
[58] Rambo, P. W.; Denavit, J., Time-implicit fluid simulation of collisional plasmas, J. Comput. Phys., 98, 317 (1992) · Zbl 0741.76100
[59] Rambo, P. W., Finite-grid instability in quasineutral hybrid simulations, J. Comput. Phys., 118, 152 (1995) · Zbl 0824.76056
[60] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), PWS Publishing: PWS Publishing New York · Zbl 1002.65042
[61] Saurel, R.; Abgrall, R., A mutiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425 (1999) · Zbl 0937.76053
[62] Schneider, R.; Munz, C.-D., The approximation of two-fluid plasma flow with explicit upwind schemes, Int. J. Numer. Model., 8, 399 (2005)
[63] Sethian, J. A., Level Set Methods. Evolving Interfaces in Geometry, Fluid Mechanic, Computer Vision, and Material Science (1999), Cambridge University Press · Zbl 0973.76003
[64] Shumlak, U.; Loverich, J., Approximate Riemann solver for the two-fluid plasma model, J. Comput. Phys., 187, 620 (2003) · Zbl 1061.76526
[65] Slemrod, M., Shadowing and the plasma-sheath transition layer, J. Nonlinear Sci., 11, 193 (2001) · Zbl 1001.76125
[66] Slemrod, M., The radio frequency driven plasma sheath: asymptotics and analysis, SIAM J. Appl. Math., 63, 1737 (2003) · Zbl 1037.76072
[67] Slemrod, M.; Sternberg, N., Quasi-neutral limit for Euler-Poisson system, J. Nonlinear Sci., 11, 193 (2001) · Zbl 0997.34033
[68] Sternberg, N.; Godyak, V. A., Solving the mathematical model of the electrode sheath in symmetrically driven RF discharges, J. Comput. Phys., 111, 347 (1994) · Zbl 0796.76096
[69] Sze, H.; Benford, J.; Woo, W.; Harteneck, B., Dynamics of a virtual cathode oscillator driven by a pinched diode, Phys. Fluids, 29, 3873 (1986)
[70] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25 (1992) · Zbl 0758.76047
[71] Ventzek, P. L.G.; Sommerer, T. J.; Hoekstra, R. J.; Kushner, M. J., Two-dimensional hybrid model of inductively coupled plasma sources for etching, Appl. Phys. Lett., 63, 605 (1993)
[72] Ventzek, P. L.G.; Hoekstra, R. J.; Kushner, M. J., Two-dimensional modeling of high plasma density inductively coupled sources for materials processing, J. Vac. Sci. Technol. B, 12, 461 (1994)
[73] Wallace, J. M.; Brackbill, J. U.; Forslund, D. W., An implicit moment electromagnetic plasma simulation in cylindrical coordinates, J. Comput. Phys., 63, 434 (1986) · Zbl 0587.76203
[74] Wang, S., Quasineutral limit of Euler-Poisson system with and without viscosity, Commun. Partial Differential Equations, 29, 419 (2004) · Zbl 1140.35551
[75] Westermann, T., Particle-in-cell simulations with moving boundaries – adaptive mesh generation, J. Comput. Phys., 114, 161 (1994) · Zbl 0811.65123
[76] Yee, H. C.; Warming, R. F.; Harten, A., Implicit total variation diminishing (TVD) schemes for steady-state calculations, J. Comput. Phys., 57, 327 (1985) · Zbl 0631.76087
[77] Yee, H. C., Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation, J. Comput. Phys., 131, 216 (1997) · Zbl 0889.76054
[78] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics (1982), Academic Press: Academic Press New York), 273 · Zbl 0537.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.