×

Global dynamics of a virus dynamical model with cell-to-cell transmission and cure rate. (English) Zbl 1335.92105

Summary: The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beijerinck, M. W., Über ein Contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter, Verhandelingen der Koninklyke akademie van Wettenschappen te Amsterdam, 65, 1-22 (1898)
[2] Breitbart, M.; Rohwer, F., Here a virus, there a virus, everywhere the same virus?, Trends in Microbiology, 13, 6, 278-284 (2005) · doi:10.1016/j.tim.2005.04.003
[3] Anthony, S. J.; Epstein, J. H.; Murray, K. A.; Navarrete-Macias, I.; Zambrana-Torrelio, C. M.; Solovyov, A.; Ojeda-Flores, R.; Arrigo, N. C.; Islam, A.; Khan, S. A.; Hosseini, P.; Bogich, T. L.; Olival, K. J.; Sanchez-Leon, M. D.; Karesh, W. B.; Goldstein, T.; Luby, S. P.; Morse, S. S.; Mazet, J. A. K.; Daszak, P.; Lipkin, W. I., A strategy to estimate unknown viral diversity in mammals, mBio, 4, 5 (2013) · doi:10.1128/mbio.00598-13
[4] World Health Organization, Zoonoses and the Human-Animal-Ecosystems Interface (2014), WHO
[5] Taylor, L. H.; Latham, S. M.; Woolhouse, M. E. J., Risk factors for human disease emergence, Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 1411, 983-989 (2001) · doi:10.1098/rstb.2001.0888
[6] Marx, P. A.; Apetrei, C.; Drucker, E., AIDS as a zoonosis? Confusion over the origin of the virus and the origin of the epidemics, Journal of Medical Primatology, 33, 5-6, 220-226 (2004) · doi:10.1111/j.1600-0684.2004.00078.x
[7] Collier, L.; Balows, A.; Sussman, M., Topley and Wilson’s Microbiology and Microbial Infections. Topley and Wilson’s Microbiology and Microbial Infections, Virology, 1 (1998), Arnold
[8] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C.; Mcdade, H., Viral dynamics in hepatitis B virus infection, Proceedings of the National Academy of Sciences of the United States of America, 93, 9, 4398-4402 (1996) · doi:10.1073/pnas.93.9.4398
[9] Nowak, M. A.; May, R. M., Viral Dynamics (2000), Oxford, UK: Oxford University Press, Oxford, UK · Zbl 1101.92028
[10] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41, 1, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/s0036144598335107
[11] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 5255, 1582-1586 (1996) · doi:10.1126/science.271.5255.1582
[12] Nelson, P. W.; Perelson, A. S., Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences, 179, 1, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/s0025-5564(02)00099-8
[13] Min, L.; Su, Y.; Kuang, Y., Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky Mountain Journal of Mathematics, 38, 5, 1573-1585 (2008) · Zbl 1194.34107 · doi:10.1216/rmj-2008-38-5-1573
[14] Li, D.; Ma, W., Asymptotic properties of a HIV-1 infection model with time delay, Journal of Mathematical Analysis and Applications, 335, 1, 683-691 (2007) · Zbl 1130.34052 · doi:10.1016/j.jmaa.2007.02.006
[15] Song, X.; Neumann, A. U., Global stability and periodic solution of the viral dynamics, Journal of Mathematical Analysis and Applications, 329, 1, 281-297 (2007) · Zbl 1105.92011 · doi:10.1016/j.jmaa.2006.06.064
[16] Huang, G.; Ma, W.; Takeuchi, Y., Global properties for virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 22, 11, 1690-1693 (2009) · Zbl 1178.37125 · doi:10.1016/j.aml.2009.06.004
[17] Zhou, X.; Cui, J., Global stability of the viral dynamics with Crowley-Martin functional response, Bulletin of the Korean Mathematical Society, 48, 3, 555-574 (2011) · Zbl 1364.34076 · doi:10.4134/bkms.2011.48.3.555
[18] Huang, G.; Takeuchi, Y.; Ma, W., Lyapunov functionals for delay differential equations model of viral infections, SIAM Journal on Applied Mathematics, 70, 7, 2693-2708 (2010) · Zbl 1209.92035 · doi:10.1137/090780821
[19] Hattaf, K.; Yousfi, N.; Tridane, A., Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13, 4, 1866-1872 (2012) · Zbl 1254.92065 · doi:10.1016/j.nonrwa.2011.12.015
[20] Tian, Y.; Liu, X., Global dynamics of a virus dynamical model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 16, 1, 17-26 (2014) · Zbl 1298.34083 · doi:10.1016/j.nonrwa.2013.09.002
[21] Guidotti, L. G.; Rochford, R.; Chung, J.; Shapiro, M.; Purcell, R.; Chisari, F. V., Viral clearance without destruction of infected cells during acute HBV infection, Science, 284, 5415, 825-829 (1999) · doi:10.1126/science.284.5415.825
[22] Hattaf, K.; Yousfi, N., Hepatitis B virus infection model with logistic hepatocyte growth and cure rate, Applied Mathematical Sciences, 5, 45-48, 2327-2335 (2011) · Zbl 1242.92040
[23] Wang, K.; Fan, A.; Torres, A., Global properties of an improved hepatitis B virus model, Nonlinear Analysis: Real World Applications, 11, 4, 3131-3138 (2010) · Zbl 1197.34081 · doi:10.1016/j.nonrwa.2009.11.008
[24] Dahari, H.; Shudo, E.; Ribeiro, R. M.; Perelson, A. S., Modeling complex decay profiles of hepatitis B virus during antiviral therapy, Hepatology, 49, 1, 32-38 (2009) · doi:10.1002/hep.22586
[25] Huan, Q.; Ning, P.; Ding, W., Global stability for a dynamic model of hepatitis B with antivirus treatment, Journal of Applied Analysis and Computation, 3, 1, 37-50 (2013) · Zbl 1298.35231
[26] Jiang, X.; Zhou, X.; Shi, X.; Song, X., Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD \(4^+\) T-cells, Chaos, Solitons and Fractals, 38, 2, 447-460 (2008) · Zbl 1146.34313 · doi:10.1016/j.chaos.2006.11.026
[27] Zhou, X.; Song, X.; Shi, X., A differential equation model of HIV infection of CD \(4^+\) T-cells with cure rate, Journal of Mathematical Analysis and Applications, 342, 2, 1342-1355 (2008) · Zbl 1188.34062 · doi:10.1016/j.jmaa.2008.01.008
[28] Srivastava, P. K.; Chandra, P., Modeling the dynamics of HIV and CD \(4^+\) T cells during primary infection, Nonlinear Analysis: Real World Applications, 11, 2, 612-618 (2010) · Zbl 1181.37122 · doi:10.1016/j.nonrwa.2008.10.037
[29] Hattaf, K.; Yousfi, N., Dynamics of HIV infection model with therapy and cure rate, International Journal of Tomography & Statistics, 16, 11, 74-80 (2011)
[30] Liu, X.; Wang, H.; Hu, Z.; Ma, W., Global stability of an HIV pathogenesis model with cure rate, Nonlinear Analysis: Real World Applications, 12, 6, 2947-2961 (2011) · Zbl 1231.34094 · doi:10.1016/j.nonrwa.2011.04.016
[31] Xiao, Y.; Miao, H.; Tang, S.; Wu, H., Modeling antiretroviral drug responses for HIV-1 infected patients using differential equation models, Advanced Drug Delivery Reviews, 65, 7, 940-953 (2013) · doi:10.1016/j.addr.2013.04.005
[32] Li, J.; Song, X.; Gao, F., Global stability of a virus infection model with two delays and two types of target cells, Journal of Applied Analysis and Computation, 2, 3, 281-292 (2012) · Zbl 1304.92122
[33] McDonald, D.; Wu, L.; Bohks, S. M.; KewalRamani, V. N.; Unutmaz, D.; Hope, T. J., Recruitment of HIV and its receptors to dendritic cell-T cell junctions, Science, 300, 5623, 1295-1297 (2003) · doi:10.1126/science.1084238
[34] Sattentau, Q., Avoiding the void: cell-to-cell spread of human viruses, Nature Reviews Microbiology, 6, 11, 815-826 (2008) · doi:10.1038/nrmicro1972
[35] Stein, B. S.; Gowda, S. D.; Lifson, J. D.; Penhallow, R. C.; Bensch, K. G.; Engleman, E. G., pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell, 49, 5, 659-668 (1987) · doi:10.1016/0092-8674(87)90542-3
[36] Phillips, D. M., The role of cell-to-cell transmission in HIV infection, AIDS, 8, 6, 719-731 (1994)
[37] Sato, H.; Orensteint, J.; Dimitrov, D.; Martin, M., Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles, Virology, 186, 2, 712-724 (1992) · doi:10.1016/0042-6822(92)90038-q
[38] Igakura, T.; Stinchcombe, J. C.; Goon, P. K. C.; Taylor, G. P.; Weber, J. N.; Griffiths, G. M.; Tanaka, Y.; Osame, M.; Bangham, C. R. M., Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton, Science, 299, 5613, 1713-1716 (2003) · doi:10.1126/science.1080115
[39] Pais-Correia, A.-M.; Sachse, M.; Guadagnini, S.; Robbiati, V.; Lasserre, R.; Gessain, A.; Gout, O.; Alcover, A.; Thoulouze, M.-I., Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses, Nature Medicine, 16, 1, 83-89 (2010) · doi:10.1038/nm.2065
[40] Bangham, C. R. M., The immune control and cell-to-cell spread of human T-lymphotropic virus type 1, Journal of General Virology, 84, 12, 3177-3189 (2003) · doi:10.1099/vir.0.19334-0
[41] Satou, Y.; Yasunaga, J.-I.; Yoshida, M.; Matsuoka, M., HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells, Proceedings of the National Academy of Sciences of the United States of America, 103, 3, 720-725 (2006) · doi:10.1073/pnas.0507631103
[42] Dingwell, K. S.; Brunetti, C. R.; Hendricks, R. L.; Tang, Q.; Tang, M.; Rainbow, A. J.; Johnson, D. C., Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells, Journal of Virology, 68, 2, 834-845 (1994)
[43] Duprex, W. P.; McQuaid, S.; Hangartner, L.; Billeter, M. A.; Rima, B. K., Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus, Journal of Virology, 73, 11, 9568-9575 (1999)
[44] Krantic, S.; Gimenez, C.; Rabourdin-Combe, C., Cell-to-cell contact via measles virus haemagglutinin-CD46 interaction triggers CD46 downregulation, Journal of General Virology, 76, 11, 2793-2800 (1995) · doi:10.1099/0022-1317-76-11-2793
[45] Wild, T. F.; Malvoisin, E.; Buckland, R., Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion, Journal of General Virology, 72, 2, 439-442 (1991) · doi:10.1099/0022-1317-72-2-439
[46] Jolly, C., Cell-to-cell transmission of retroviruses: innate immunity and interferon-induced restriction factors, Virology, 411, 2, 251-259 (2011) · doi:10.1016/j.virol.2010.12.031
[47] Sigal, A.; Kim, J. T.; Balazs, A. B.; Dekel, E.; Mayo, A.; Milo, R.; Baltimore, D., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477, 7362, 95-99 (2011) · doi:10.1038/nature10347
[48] Lai, X.; Zou, X., Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM Journal on Applied Mathematics, 74, 3, 898-917 (2014) · Zbl 1304.34139 · doi:10.1137/130930145
[49] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28, 4, 365-382 (1990) · Zbl 0726.92018
[50] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 1, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/s0025-5564(02)00108-6
[51] Routh, E. J.; Clifford, W. K.; Sturm, C.; Bocher, M., Stability of Motion (1975), London, UK: Taylor & Francis, London, UK · Zbl 0312.34033
[52] La Salle, J. P., The Stability of Dynamica Systems (1976), Philadelphia, Pa, USA: SIAM Publications, Philadelphia, Pa, USA · Zbl 0364.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.