×

Modeling multibody systems with uncertainties. I: Theoretical and computational aspects. (English) Zbl 1146.70330

Summary: This study explores the use of generalized polynomial chaos theory for modeling complex nonlinear multibody dynamic systems in the presence of parametric and external uncertainty. The polynomial chaos framework has been chosen because it offers an efficient computational approach for the large, nonlinear multibody models of engineering systems of interest, where the number of uncertain parameters is relatively small, while the magnitude of uncertainties can be very large (e.g., vehicle-soil interaction). The proposed methodology allows the quantification of uncertainty distributions in both time and frequency domains, and enables the simulations of multibody systems to produce results with “error bars”.
The first part of this study presents the theoretical and computational aspects of the polynomial chaos methodology. Both unconstrained and constrained formulations of multibody dynamics are considered. Direct stochastic collocation is proposed as less expensive alternative to the traditional Galerkin approach. It is established that stochastic collocation is equivalent to a stochastic response surface approach. We show that multi-dimensional basis functions are constructed as tensor products of one-dimensional basis functions and discuss the treatment of polynomial and trigonometric nonlinearities. Parametric uncertainties are modeled by finite-support probability densities. Stochastic forcings are discretized using truncated Karhunen-Loeve expansions.
The companion paper [cf. Part II, Multibody Syst. Dyn. 15, No. 3, 241–262 (2006; Zbl 1146.70331)] illustrates the use of the proposed methodology on a selected set of test problems. The overall conclusion is that despite its limitations, polynomial chaos is a powerful approach for the simulation of multibody systems with uncertainties.

MSC:

70E99 Dynamics of a rigid body and of multibody systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34F05 Ordinary differential equations and systems with randomness

Citations:

Zbl 1146.70331

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part II: Numerical applications. Multibody Syst. Dyn. #(#), #–# (2006) · Zbl 1146.70331
[2] Dorf, R.C., Bishop, R.H.: Modern Control Systems, 9th edn. Prentice Hall, New Jersey (2001)
[3] Haug, E.J.: Computer Aided Kinematics and Dynamics. Vol I: Basic Methods. Allyn and Bacon, Boston (1989)
[4] Hairer, E., Warner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised edn. Springer, Berlin (1996)
[5] Caughey, T.K.: Nonlinear theory of random vibrations. In: Advances in Applied Mechanics 11, Academic Press, New York (1971)
[6] Dimentberg, M.F.: An exact solution to a certain non-linear random vibration problem. Int. J. Non-linear Mech. 17(4), 231–234 (1982) · Zbl 0506.70028
[7] Rubinstein, R.Y.: Simulation and the Monte Carlo Method. John Wiley, New York (1981) · Zbl 0529.68076
[8] Spanos, P.D., Mignolet, M.D.: Arma Monte Carlo Simulation in Probabilistic Structural Analysis. Shock and Vibration Digest 21, 3–10 (1989) · doi:10.1177/058310248902101103
[9] Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), (1994)
[10] McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 237–240 (1979) · Zbl 0415.62011
[11] Bergin, M.S., Noblet, G.S., Petrini, K., Dhieux, J.R., Milford, J.B., Harley, R.A.: Formal uncertainty analysis of a lagrangian photochemical air pollution. Model. Environ. Sci. Technol. 32, 1116–1126 (1999) · doi:10.1021/es980749y
[12] Bergin, M., Milford, J.B.: Application of bayesian Monte Carlo analysis to a lagrangian photochemical air quality Model. Atmos. Env. 33(5), 781–792 (2000) · doi:10.1016/S1352-2310(99)00346-5
[13] Butler, D.M.: The uncertainty in ozone calculations by a stratospheric photochemistry Model. Geophys. Res. Lett. 5, 769–772 (1978) · doi:10.1029/GL005i009p00769
[14] Stolarski, R.S.: Uncertainty and sensitivity studies of stratospheric photochemistry. In: Aikin, A.C. (Eds.), Proc. of the NATO Advanced Study Institute on Atmospheric Ozone: Its Variations and Human Influences, pp. 865–876. Rep. FAA-EE-80-20, U.S.D.O.T., Washington D.C. (1980)
[15] Dunker, A.M.: The decoupled direct method for calculating sensitivity coefficients in chemical kinetics. J. Chem. Phys. 81, 2365 (1984)
[16] Nayfeh, A.H.: Perturbation Methods. Wiely-Interscience, London (1973) · Zbl 0265.35002
[17] Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiely-Interscience, London (1981) · Zbl 0449.34001
[18] Adomian, G.: Stochastic Systems. Academic Press, New York (1983). · Zbl 0523.60056
[19] Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. John Wiley and Sons, New York (1990) · Zbl 0715.73100
[20] Falsone, G.: Stochastic linearization of MDOF systems under parametric excitations. Int. J. Non-linear Mech. 27(6), 1025–1035 (1992) · Zbl 0765.70018 · doi:10.1016/0020-7462(92)90053-A
[21] Spanos, P., Ghanem, R.: Boundary element method analysis for random vibration problems. J. Eng. Mech., ASCE 117(2), 389–393 (1991)
[22] Van de Wouw, N., Nijmeijer, H., van Campen, D.H.: A volterra series approach to the approximation of stochastic nonlinear dynamics. Non-linear Dynam. 27, 377–389 (2002) · Zbl 1018.70009
[23] Cai, G.Q., Lin, Y.K., Elishakoff, I.: A new approximate solution technique for randomly excited non-linear oscillators. Int. J. Non-linear Mech. 27(6), 969–979 (1992) · Zbl 0760.70019 · doi:10.1016/0020-7462(92)90049-D
[24] Tatang, M.A., Pan, W., Prinn, R.G., McRae, G.J.: An efficient method for parametric uncertainty analysis of numerical geophysical models. J. Geophy. Res. 102, 21925–21931 (1997) · doi:10.1029/97JD01654
[25] McRae, G.: New Directions in Model Based Data Assimilation. MIT Chemical Engineering course 10 (2000)
[26] Isukapalli, S.S., Georgopoulos, P.G.: Propagation of uncertainties in photochemical mechanisms through urban/regional scale grid-based air pollution models. In: Proc. of the A&WMA 90th Annual Meeting. Toronto, Canada (1997)
[27] Isukapalli, S.S., Georgopoulos, P.G.: Computationally efficient methods for uncertainty analysis of environmental models. In: Proc. of the A&WMA Specialty Conference on Computing in Environmental Resource Management, pp. 656–665. A&WMA VIP-68 (1997)
[28] Isukapalli, S.S., Roy, A., Georgopoulos, P.G.: Stochastic response surface methods (SRSMs) for uncertainty propoagation: application to environmental and biological systems. http://www.ccl.rutgers.edu/\(\sim\)ssi/srsmreport/srsm.html (1998)
[29] Isukapalli, S.S., Georgopoulos, P.G.: Development and application of methods for assessing uncertainty in photochemical air quality problems. Interim Report, prepared for the U.S.EPA National Exposure Research Laboratory, under Cooperative Agreement CR 823467 (1998)
[30] Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon and Breach, New York (1963) · Zbl 0119.14502
[31] Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-linear Mech. 21(4), 111–133 (1986) · Zbl 0582.73077 · doi:10.1016/0020-7462(86)90025-9
[32] Zhu, W.Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 38(5), 189–199 (1988) · doi:10.1115/1.3151891
[33] Wu, W.F., Lin, Y.K.: Cumulant-neglect closure for non-linear oscillators under random parametric and external excitation. Int. J. Non-linear Mech. 19(4), 337–362 (1994)
[34] Crandall, S.H.: Non-Gaussian closure techniques for stationary random vibration. Int. J. Non-linear Mech. 20(1), 1–8 (1985) · Zbl 0558.70025 · doi:10.1016/0020-7462(85)90042-3
[35] Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer Verlag (1991) · Zbl 0722.73080
[36] Ghanem, R., Spanos, P.: A spectral stochastic finite element formulation for reliability analysis. J. Eng. Mech., ASCE 117(10), 2338–2349 (1991) · doi:10.1061/(ASCE)0733-9399(1991)117:10(2351)
[37] Wiener, N.: The homogeneous chaos. Amer. J. Math. 60, 897–936 (1936) · Zbl 0019.35406 · doi:10.2307/2371268
[38] Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comp. submitted (2003) · Zbl 1075.60084
[39] Spanos, P., Ghanem, R.: Stochastic finite element expansion for random media. J. Eng. Mech. ASCE 115(5), 1034–1053 (1989) · doi:10.1061/(ASCE)0733-9399(1989)115:5(1035)
[40] Ghanem, R., Spanos, P.: Polynomial chaos in stochastic finite element. J. Appl. Mech. ASME 57(1), 197–202 (1990) · Zbl 0729.73290 · doi:10.1115/1.2888303
[41] Ghanem, R., Spanos, P.: A stochastic Galerkin expansion for nonlinear random vibration analysis. Probabilistic Eng. Mech. 8, 255–264 (1993) · doi:10.1016/0266-8920(93)90019-R
[42] Ghanem, R., Spanos, P., Swerdon, S.: Coupled in-line and transverse flow-induced vibration: higher order harmonic solutions. Sadhana, J. Indian Acad. Sci. 20(2–4), 691–707 (1995)
[43] Ghanem, R., Sarkar, A.: Reduced models for the medium-frequency dynamics of stochastic systems. J. Acoust. Soc. Am. 113(2), (2003)
[44] Karniadakis, G.E.: Towards a numerical error bar in CFD, Editorial Article. J. Fluids Eng. (1995)
[45] Jardak, M., Su, C.-H., Karniadakis, G.E.: Spectral polynomial chaos solutions of the stochastic advection equation. J. Sci. Comp. 17(1–4), 319–328 (2002) · Zbl 1001.76084
[46] Xiu, D., Karniadakis, G.E.: The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–639 (2002) · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[47] Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Meth. Appl. Mech. Eng. 191, 4427–4443 (2002) · Zbl 1016.65001 · doi:10.1016/S0045-7825(02)00421-8
[48] Xiu, D., Karniadakis, G.E.: On the well-posedness of generalized polynomial chaos expansions for the stochastic diffusion equation. SIAM J. Numer. Anal., submitted (2003)
[49] Xiu, D., Karniadakis, G.E.: A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Tranfer 41, 4181–4193 (2003) · Zbl 1038.80003
[50] Xiu, D., Karniadakis, G.E.: Uncertainty modeling of burgers equation by generalized polynomial chaos. Computational Stochastic Mechanics. In: Spanos, P.D., Deodatis, G. (eds.) Proc. of the 4th Int. Conf. on Computational Stochastic Mechanics, pp. 655–661. Corfu, Greece (2002), Millpress, Rotterdam (2003)
[51] Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comp. Phys. 187, 135–167 (2003) · Zbl 1047.76111 · doi:10.1016/S0021-9991(03)00092-5
[52] Xiu, D., Karniadakis, G.E.: Supersensitivity due to uncertain boundary conditions. Int. J. Numer. Methods Eng., submitted (2003) · Zbl 1075.76623
[53] Xiu, D., Lucor, D., Su, C.-H., Karniadakis, G.E.: Stochastic modeling of flow-structure interactions using generalized polynomial chaos. J. Fluids Eng. 124, 46–59 (2002) · doi:10.1115/1.1436089
[54] Lucor, D., Su, C-H., and Karniadakis, G.E.: Generalized polynomial chaos and random oscillators. Int. J. Numer. Methods Eng. submitted (2002) · Zbl 1060.70515
[55] Lucor, D., Xiu, D., Su, C.-H., Karniadakis, G.E.: Predictability and uncertainty in CFD. Int. J. Num. Meth. Fluids 38(5), 435–455 (2003) · Zbl 1032.76662
[56] Keese, A.: A review of recent developments in the numerical solution of stochastic partial differential equations (stochastic finite elements). Insitute für Wissenschaftliches Rechnen, Technische Universität Braunschweig (2003)
[57] Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Ann. Math. 43(2), (1942) · Zbl 0029.14302
[58] Trefethen, L.N., Baw, D., III: Spectral Methods in MATLAB. SIAM (1998)
[59] Mathelin, L., Hussaini, M.Y.: A Stochastic collocation algorithm for uncertainty analysis, NASA/CR-2003-212153 (2003) · Zbl 1140.76410
[60] Mathelin, L., Hussaini, M.Y., Zang, T.A., Bataille, F.: Uncertainty propagation for turbulent, compressible flow in a quasi-1d nozzle using stochastic methods. In: AIAA 2003–3938, 16th AIAA Computational Fluid Dynamics Conf., June 23–26 Orlando, FL (2003)
[61] Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. John Wiley & Sons, New York (1989). · Zbl 0718.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.