×

Induced drift of scroll waves in the Aliev-Panfilov model and in an axisymmetric heart left ventricle. (English) Zbl 1458.92046

Summary: The low-voltage cardioversion-defibrillation is a modern sparing electrotherapy method for such dangerous heart arrhythmias as paroxysmal tachycardia and fibrillation. In an excitable medium, such arrhythmias relate to appearance of spiral waves of electrical excitation, and the spiral waves are superseded to the electric boundary of the medium in the process of treatment due to high-frequency stimulation from the electrode. In this paper we consider the Aliev-Panfilov myocardial model, which provides a positive tension of three-dimensional scroll waves, and an axisymmetric model of the left ventricle of the human heart. Two relations of anisotropy are considered, namely, isotropy and physiological anisotropy. The periods of stimulation with an apical electrode are found so that the electrode successfully entrains its rhythm in the medium, the spiral wave is superseded to the base of the ventricle, and disappears. The results are compared in two-dimensional and three-dimensional media. The intervals of effective stimulation periods are sufficiently close to each other in the two-dimensional case and in the anatomical model. However, the use of the anatomical model is essential in determination of the time of superseding.

MSC:

92C50 Medical applications (general)
92B25 Biological rhythms and synchronization

Software:

Ani3D; Chaste
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. R. Aliev and A. V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals7 (1996), 293-301.
[2] H. J. Arevalo, F. Vadakkumpadan, E. Guallar, A. Jebb, P. Malamas, K. C. Wu, and N. A. Trayanova, Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Communications7 (2016), 11437.
[3] V. N. Biktashev, A. V. Holden, and H. Zhang, Tension of organizing filaments of scroll waves. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences347 (1994), 611-630. · Zbl 0862.92002
[4] P. M. Boyle, T. Zghaib, S. Zahid, R. L. Ali, D. Deng, W. H. Franceschi, J. B. Hakim, M. J. Murphy, A. Prakosa, S. L. Zimmerman, H. Ashikaga, J. E. Marine, A. Kolandaivelu, S. Nazarian, D. D. Spragg, H. Calkins, and N. A. Trayanova, Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomed. Engrg. 3 (2019), 870-879.
[5] I. R. Efimov, V. I. Krinsky, and J. Jalife, Dynamics of rotating vortices in the Beeler-Reuter model of cardiac tissue. Chaos, Solitons & Fractals5 (1995), 513-526. · Zbl 0925.92056
[6] T. Epanchintsev, S. Pravdin, and A. Panfilov, The impact of cardiac tissue anisotropy on spiral wave superseding: A simulation study using ionic cell models. In: Procedia Computer Science (Eds. A. Klimova, A. Bilyatdinova, V. Harmandaris, A. Bilas, and A. Boukhanovsky), Vol. 136. Elsevier, 2018, pp. 359-369.
[7] T. Epanchintsev, S. Pravdin, and A. Panfilov, Spiral wave drift induced by high-frequency forcing. Parallel simulation in the Luo-Rudy anisotropic model of cardiac tissue. In: Computational Science — ICCS 2018 (Eds. Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot). Springer Int. Publ., Cham, 2018, pp. 378-391.
[8] T. Epanchintsev, S. Pravdin, and A. Panfilov, Simulation of spiral wave superseding in the Luo-Rudy anisotropic model of cardiac tissue with circular-shaped fibres. J. Comp. Sci. 32 (2019), 1-11.
[9] T. Epanchintsev, S. Pravdin, A. Sozykin, and A. Panfilov, Simulation of overdrive pacing in 2D phenomenological models of anisotropic myocardium. In: Proc. 6th Int. Young Scientists Conf. in HPC and Simulation YSC 2017 (Eds. A. Klimova, A. Bilyatdinova, J. Kortelainen, and A. Boukhanovsky), Procedia Computer Science, Vol. 119. Elsevier B.V., Kotka, 2017, 245-254.
[10] E. A. Ermakova, V. I. Krinsky, A. V. Panfilov, and A. M. Pertsov, Interaction between spiral and flat periodic autowaves in an active medium. Biofizika31 (1986), 318-323 (in Russian).
[11] G. Gottwald, A. Pumir, and V. Krinsky, Spiral wave drift induced by stimulating wave trains. Chaos: An Interdiscip. J. Nonlinear Sci. 11 (2001), 487-494. · Zbl 1059.92511
[12] J. Jalife, M. Delmar, J. Anumonwo, O. Berenfeld, and J. Kalifa, Basic Cardiac Electrophysiology for the Clinician. Wiley-Blackwell, Chichester, 2009.
[13] J. P. Keener, The dynamics of three-dimensional scroll waves in excitable media. Physica D: Nonlinear Phenomena31 (1988), 269-276. · Zbl 0645.76052
[14] V. I. Krinsky and K. I. Agladze, Interaction of rotating waves in an active chemical medium. Physica D: Nonlinear Phenomena8 (1983), 50-56.
[15] E. Kuklin and S. Pravdin, In-silico analysis of the role of boundary conditions in the induced drift of 2D spiral waves. In: IEEE 2020 Ural Symp Biomed. Engrg., Radioelectronics and Information Technology (USBEREIT). Ekaterinburg, 2020, pp. 81-84.
[16] K. Lipnikov, Yu. Vassilevski, A. Danilov et al., Advanced Numerical Instruments 3D. https://sourceforge.net/projects/ani3d/.
[17] C. H. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research68 (1991), 1501-1526.
[18] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit, S.-J. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M. Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J. Gavaghan, Chaste: an open source C++ library for computational physiology and biology. PLOS Computational Biology9 (2013), 1-8.
[19] A. Panfilov, A. N. Rudenko, and V. I. Krinsky, Turbulent rings in 3-dimensional active media with diffusion by 2 components. Biofizika31 (1986), 850-854 (in Russian).
[20] A. V. Panfilov, R. R. Aliev, and A. V. Mushinsky, An integral invariant for scroll rings in a reaction-diffusion system. Physica D: Nonlinear Phenomena36 (1989), 181-188. · Zbl 0669.92002
[21] A. V. Panfilov and A. N. Rudenko, Two regimes of the scroll ring drift in the three-dimensional active media. Physica D: Nonlinear Phenomena28 (1987), 215-218.
[22] A. Prakosa, H. J. Arevalo, D. Deng, P. M. Boyle, P. P. Nikolov, H. Ashikaga, J. J. E. Blauer, E. Ghafoori, C. J. Park, R. C. Blake, F. T. Han, R. S. MacLeod, H. R. Halperin, D. J. Callans, R. Ranjan, J. Chrispin, S. Nazarian, and N. A. Trayanova, Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nature Biomed. Engrg. 2 (2018), 732-740.
[23] S. F. Pravdin, H. Dierckx and A. V. Panfilov, Effect of the form and anisotropy of the left ventricle on the drift of spiral waves. Biophysics62 (2017), 309-311.
[24] S. F. Pravdin, H. Dierckx, and A. Panfilov, Drift of scroll waves of electrical excitation in an isotropic model of the cardiac left ventricle. Russ. J. Numer. Anal. Math. Modelling31 (2016), No. 5, 293-304. · Zbl 1349.92044
[25] S. F. Pravdin, T. V. Nezlobinsky, T. I. Epanchintsev, H. Dierckx, and A. V. Panfilov, Simulation of low-voltage cardioversion in a two-dimensional isotropic excitable medium using ionic cell models. In: Proc. Int. Conf. ‘Mathematical Analysis With Applications — In Honor of the 90th Birthday of Constantin Corduneanu’ (2018) (Eds. S. Pinelas, A. Kim, and V. Vlasov), Springer Proc. in Mathematics & Statistics, Vol. 318. Springer, Ekaterinburg, 2020, pp. 273-288. · Zbl 1469.92037
[26] S. F. Pravdin, T. V. Nezlobinsky, and A. V. Panfilov, Inducing drift of spiral waves in 2D isotropic model of myocardium by means of an external stimulation. In: Proc. 48th Int. Youth School-Conf. ‘Modern Problems in Mathematics and its Applications’ (Eds. S. Pravdin and A. Makhnev). IMM UB RAS, Yekaterinburg, 2017, pp. 268-284.
[27] S. F. Pravdin, T. V. Nezlobinsky, and A. V. Panfilov, Modelling of low-voltage cardioversion using 2D isotropic models of the cardiac tissue. In: Proc. Int. Conf. Days on Diffraction 2017 (Eds. O. V. Motygin, A. P. Kiselev, L. I. Goray, T. A. Suslina, A. Ya. Kazakov, and A. S. Kirpichnikova). Saint-Petersburg, 2017, pp. 276-281.
[28] S. F. Pravdin, V. I. Berdyshev, A. V. Panfilov, L. B. Katsnelson, O. Solovyova, and V. S. Markhasin, Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart. Biomed. Engrg. Online54 (2013), 1-21.
[29] S. F. Pravdin, H. Dierckx, L. B. Katsnelson, O. Solovyova, V. S. Markhasin, and A.V. Panfilov, Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture. PLOS One9 (2014), e93617.
[30] C. M. Ripplinger, V. I. Krinsky, V. P. Nikolski, and I. R. Efimov, Mechanisms of unpinning and termination of ventricular tachycardia. Amer. J. Physiol. Heart Circ. Physiol. 291 (2006), H184-H192.
[31] N. Shaheen, A. Shiti, I. Huber, R. Shinnawi, G. Arbel, A. Gepstein, N. Setter, I. Goldfracht, A. Gruber, S. V. Chorna, and L. Gepstein, Human induced pluripotent stem cell-derived cardiac cell sheets expressing genetically encoded voltage indicator for pharmacological and arrhythmia studies. Stem Cell Reports10 (2018), 1879-1894.
[32] A. Sozykin, S. Pravdin et al., LeVen — a parallel system for simulation of the heart left ventricle. In: Application of Information and Communication Technologies (AICT), 2015 IEEE 9th Int. Conf., 2015, pp. 249-252.
[33] A. T. Stamp, G. V. Osipov, and J. J. Collins, Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers. Chaos: Interdiscip. J. Nonlinear Sci. 12 (2002), 931-940.
[34] M O. Sweeney, Antitachycardia pacing for ventricular tachycardia using implantable cardioverter defibrillators. Pacing and Clinical Electrophysiology27 (2004), 1292-1305.
[35] M. Tanaka, M. Horning, H. Kitahata, and K. Yoshikawa, Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media. Chaos: Interdiscip. J. Nonlinear Sci. 25 (2015), 103127.
[36] K. H. ten Tusscher and A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model. Amer. J. Physiol. Heart Circ. Physiol. 291 (2006), H1088-1100.
[37] S. P. Thomas, A. Thiagalingam, E. Wallace, P. Kovoor, and D. L. Ross, Organization of myocardial activation during ventricular fibrillation after myocardial infarction. Circulation112 (2005), 157-163.
[38] L. Uldry, N. Virag, V. Jacquemet, J.-M. Vesin, and L. Kappenberger, Optimizing local capture of atrial fibrillation by rapid pacing: Study of the influence of tissue dynamics. Annals Biomed. Engrg. 38 (2010), 3664-3673.
[39] M. S. Wathen, P. J. DeGroot, M. O. Sweeney, A. J. Stark, M. F. Otterness, W. O. Adkisson, R. C. Canby, K. Khalighi, C. Machado, D. S. Rubenstein, and K. J. Volosin, Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators. Circulation110 (2004), 2591-2596.
[40] M. Wellner, O.M. Berenfeld, J. Jalife, and A. M. Pertsov, Minimal principle for rotor filaments. Proc. Natl. Acad. Sci. USA99 (2002), 8015-8018.
[41] A. T. Winfree and S. H. Strogatz, Organizing centers for three-dimensional chemical waves. Nature311 (1984), 611-615.
[42] A. N. Zaikin and A. M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-organizing system. Nature225 (1970), 535-537.
[43] H. Zhang, B. Hu, and G. Hu, Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E68 (2003), 026134.
[44] V. S. Zykov, Simulation of Wave Processes in Excitable Media. Manchester Univ. Press, 1987. · Zbl 0691.73021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.