×

Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary. (English) Zbl 1109.65096

Summary: The paper addresses a class of boundary value problems in some self-similar ramified domains, with the Laplace or Helmholtz equations. Much stress is placed on transparent boundary conditions which allow the solutions to be computed in subdomains. A self similar finite element method is proposed and tested. It can be used for numerically computing the spectrum of the Laplace operator with Neumann boundary conditions, as well as the eigenmodes. The eigenmodes are normalized by means of a perturbation method and the spectral decomposition of a compactly supported function is carried out. Finally, a numerical method for the wave equation is addressed.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Y. Achdou, C. Sabot, N. Tchou, Diffusion and propagation problems in some ramified domains with a fractal boundary, M2AN, in press.; Y. Achdou, C. Sabot, N. Tchou, Diffusion and propagation problems in some ramified domains with a fractal boundary, M2AN, in press. · Zbl 1112.65115
[2] Y. Achdou, C. Sabot, N. Tchou. A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary, SIAM MMS, in press.; Y. Achdou, C. Sabot, N. Tchou. A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary, SIAM MMS, in press. · Zbl 1149.35023
[3] Y. Achdou, N. Tchou, Diffusion problems in 2D ramified domains with extremely irregular boundaries, in preparation.; Y. Achdou, N. Tchou, Diffusion problems in 2D ramified domains with extremely irregular boundaries, in preparation. · Zbl 1139.65320
[4] Barlow, M. T.; Nualart, D., (Bernard, P., Lectures on Probability Theory and Statistics. Lectures on Probability Theory and Statistics, Lecture Notes in Mathematics, vol. 1690 (1998), Springer-Verlag: Springer-Verlag Berlin), (Lectures from the 25th Saint-Flour Summer School held July 10-26, 1995) · Zbl 0916.60069
[5] Berger, G., Eigenvalue distribution of elliptic operators of second order with Neumann boundary conditions in a snowflake domain, Math. Nachr., 220, 11-32 (2000) · Zbl 0970.35086
[6] (Ciarlet, P. G.; Lions, J.-L., Finite Element Methods, Part 1. Finite Element Methods, Part 1, Handbook of Numerical Analysis, vol. II (1991), North-Holland: North-Holland Amsterdam) · Zbl 0712.65091
[7] Coletta, K.; Dias, K.; Strichartz, R. S., Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equations, wave equation, and Gibbs’ phenomenon, Fractals, 12, 4, 413-449 (2004) · Zbl 1304.28005
[8] Coppens, M.-O., Nature inspired chemical engineering learning from the fractal geometry of nature in sustainable chemical engineering, (Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2. Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 507-531 · Zbl 1061.92066
[9] Dalrymple, K.; Strichartz, R. S.; Vinson, J. P., Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl., 5, 2-3, 203-284 (1999) · Zbl 0937.31010
[10] M. Felici, Physique du transport diffusif de l’oxygène dans le poumon humain, PhD thesis, École Polytechnique, 2003.; M. Felici, Physique du transport diffusif de l’oxygène dans le poumon humain, PhD thesis, École Polytechnique, 2003.
[11] Gibbons, M.; Raj, A.; Strichartz, R. S., The finite element method on the Sierpinski gasket, Constr. Approx., 17, 4, 561-588 (2001) · Zbl 0991.28007
[12] Griffith, C. A.; Lapidus, M. L., Computer graphics and the eigenfunctions for the Koch snowflake drum, (Progress in Inverse Spectral Geometry. Progress in Inverse Spectral Geometry, Trends Math (1997), Birkhäuser: Birkhäuser Basel), 95-113 · Zbl 1044.58504
[13] He, C. Q.; Lapidus, M. L., Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc., 127, 608, x+97 (1997) · Zbl 0877.35086
[14] Ivrii˘, V., Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary. Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary, Lecture Notes in Mathematics, vol. 1100 (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0565.35002
[15] Jones, P. W., Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147, 1-2, 71-88 (1981) · Zbl 0489.30017
[16] Jonsson, A.; Wallin, H., Function spaces on subsets of \(\textbf{R}^n \), Math. Rep., 2, 1, xiv+221 (1984) · Zbl 0875.46003
[17] Keller, J. B.; Givoli, D., Exact nonreflecting boundary conditions, J. Comput. Phys., 82, 1, 172-192 (1989) · Zbl 0671.65094
[18] Kigami, J., Analysis on Fractals. Analysis on Fractals, Cambridge Tracts in Mathematics, vol. 143 (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0998.28004
[19] Lancia, M. R., A transmission problem with a fractal interface, Z. Anal. Anwend., 21, 1, 113-133 (2002) · Zbl 1136.31310
[20] Lancia, M. R., Second order transmission problems across a fractal surface, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 5 2, 191-213 (2003)
[21] Lapidus, M. L.; Neuberger, J. W.; Renka, R. J.; Griffith, C. A., Snowflake harmonics and computer graphics: numerical computation of spectra on fractal drums, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 6, 7, 1185-1210 (1996) · Zbl 0920.73165
[22] Lapidus, M. L.; Pang, M. M.H., Eigenfunctions of the Koch snowflake domain, Commun. Math. Phys., 172, 2, 359-376 (1995) · Zbl 0857.35093
[23] Mauroy, B.; Filoche, M.; Andrade, J. S.; Sapoval, B., Interplay between flow distribution and geometry in an airway tree, Phys. Rev. Lett., 90 (2003)
[24] Mauroy, B.; Filoche, M.; Weibel, E. R.; Sapoval, B., The optimal bronchial tree is dangerous, Nature, 90 (2004)
[25] Maz’ja, V. G., (Sobolev Spaces. Sobolev Spaces, Springer Series in Soviet Mathematics (1985), Springer-Verlag: Springer-Verlag Berlin), Translated from the Russian by T.O. Shaposhnikova · Zbl 0692.46023
[26] Mosco, U., Energy functionals on certain fractal structures, J. Convex Anal., 9, 2, 581-600 (2002), Special issue on optimization (Montpellier, 2000) · Zbl 1018.28005
[27] Mosco, U.; Vivaldi, M. A., Variational problems with fractal layers, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 5 2, 237-251 (2003)
[28] Oberlin, R.; Street, B.; Strichartz, R. S., Sampling on the Sierpinski gasket, Exp. Math., 12, 4, 403-418 (2003) · Zbl 1057.28004
[29] Rammal, R., Spectrum of harmonic excitations on fractals, J. Phys., 45, 2, 191-206 (1984)
[30] Rauch, J., Partial Differential Equations. Partial Differential Equations, Graduate Texts in Mathematics, vol. 128 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0742.35001
[31] Sabot, C., Electrical networks, symplectic reductions, and application to the renormalization map of self-similar lattices, (Proc. Sympos. Pure Math.. Proc. Sympos. Pure Math., Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, vol. 72 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 155-205 · Zbl 1066.37052
[32] Sabot, C., Spectral properties of self-similar lattices and iteration of rational maps, Mém. Soc. Math. Fr. (N.S.), 92, vi+104 (2003) · Zbl 1036.82013
[33] Sapoval, B.; Gobron, Th., Vibration of strongly irregular fractal resonators, Phys. Rev. E, 47, 5 (1993)
[34] Sapoval, B.; Gobron, Th.; Margolina, A., Vibration of fractal drums, Phys. Rev. Lett., 67, 21 (1991)
[35] R.S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton University Press, in press.; R.S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton University Press, in press. · Zbl 1190.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.