×

Unruh versus Tolman: on the heat of acceleration. (English) Zbl 1337.83007

Summary: It is shown that the Unruh effect, i.e., the increase in temperature indicated by a uniformly accelerated thermometer in an inertial vacuum state of a quantum field, cannot be interpreted as the result of an exchange of heat with a surrounding gas. Since the vacuum is spatially homogeneous in the accelerated system its temperature must be zero everywhere as a consequence of Tolman’s law. In fact, the increase of temperature of accelerated thermometers is due to systematic quantum effects induced by the local coupling between the thermometer and the vacuum. This coupling inevitably creates excitations of the vacuum which transfer energy to the thermometer, gained by the acceleration, and thereby affect its readings. The temperature of the vacuum, however, remains to be zero for arbitrary accelerations.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
80A10 Classical and relativistic thermodynamics
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) · Zbl 0972.81605 · doi:10.1017/CBO9780511622632
[2] Bisognano, J.J., Wichmann, E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985-1007 (1975) · Zbl 0316.46062 · doi:10.1063/1.522605
[3] Buchholz, D., Ojima, I., Roos, H.J.: Thermodynamic properties of non-equilibrium states in quantum field theory. Ann. Phys. 97, 219-242 (2002) · Zbl 0995.81037 · doi:10.1006/aphy.2002.6222
[4] Buchholz, D., Solveen, Ch.: Unruh effect and the concept of temperature. Class. Quantum Gravity 30, 085011 (2013) · Zbl 1267.83051 · doi:10.1088/0264-9381/30/8/085011
[5] Buchholz, D., Verch, R.: Macroscopic aspects of the Unruh effect. Class. Quantum Gravity 32, 245004 (2015) · Zbl 1331.83023 · doi:10.1088/0264-9381/32/24/245004
[6] Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787-838 (2008) · Zbl 1205.83030 · doi:10.1103/RevModPhys.80.787
[7] De Bièvre, S., Merkli, M.: The Unruh effect revisited. Class. Quantum Gravity 23, 6525-6541 (2006) · Zbl 1123.83012 · doi:10.1088/0264-9381/23/22/026
[8] Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli-Fierz systems. Ann. Henri Poincaré 4, 739-793 (2003) · Zbl 1106.81047 · doi:10.1007/s00023-003-0146-4
[9] Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850-2862 (1973) · doi:10.1103/PhysRevD.7.2850
[10] Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135-176 (1987) · doi:10.1016/0370-1573(87)90136-0
[11] Haag, R.: Local Quantum Physics. Springer, Heidelberg (1992) · Zbl 0777.46037 · doi:10.1007/978-3-642-97306-2
[12] Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Comm. Math. Phys. 5, 215-236 (1967) · Zbl 0171.47102 · doi:10.1007/BF01646342
[13] Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Comm. Math. Phys. 94, 219-238 (1984) · doi:10.1007/BF01209302
[14] Haggard, H.M., Rovelli, C.: Death and resurrection of the zeroth principle of thermodynamics. Phys. Rev. D 87, 084001 (2013) · doi:10.1103/PhysRevD.87.084001
[15] Pusz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Comm. Math. Phys. 58, 273-290 (1978) · doi:10.1007/BF01614224
[16] Russo, J.G., Townsend, P.K.: On the thermodynamics of moving bodies. Class. Quantum Gravity 27, 175005 (2010) · Zbl 1201.83017 · doi:10.1088/0264-9381/27/17/175005
[17] Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Comm. Math. Phys. 214, 705-731 (2000) · Zbl 1010.81046 · doi:10.1007/s002200000297
[18] Sciama, D.W., Candelas, P., Deutsch, D.: Quantum field theory, horizons and thermodynamics. Adv. Phys. 30, 327-366 (1981) · doi:10.1080/00018738100101457
[19] Sewell, G.L.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201-224 (1982) · doi:10.1016/0003-4916(82)90285-8
[20] Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Benjamin, New York (1964) · Zbl 0135.44305
[21] Takesaki, M.: Disjointness of the KMS state of different temperatures. Comm. Math. Phys. 17, 33-41 (1970) · doi:10.1007/BF01649582
[22] Tolman, R.C.: On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 35, 904-924 (1930) · JFM 56.0744.02 · doi:10.1103/PhysRev.35.904
[23] Tolman, R.C., Ehrenfest, P.: Temperature equilibrium in a static gravitational field. Phys. Rev. 36, 1791-1798 (1930) · doi:10.1103/PhysRev.36.1791
[24] Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870-892 (1976) · doi:10.1103/PhysRevD.14.870
[25] Unruh, W.G.: Thermal bath and decoherence of Rindler spacetime. Phys. Rev. D 46, 3271-3277 (1992) · doi:10.1103/PhysRevD.46.3271
[26] Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Univ. Chicago Press, Chicago (1994) · Zbl 0842.53052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.