×

Elastoplastic homogenization of particulate composites complying with the Mohr-Coulomb criterion and undergoing isotropic loading. (English) Zbl 1346.74016

Summary: This work aims at determining the overall response of a two-phase elastoplastic composite to isotropic loading. The composite under investigation consists of elastic particles embedded in an elastic perfectly plastic matrix governed by the Mohr-Coulomb yield criterion and a non-associated plastic flow rule. The composite sphere assemblage model is adopted, and closed-form estimates are derived for the effective elastoplastic properties of the composite either under tensile or compressive isotropic loading. In the case when elastic particles reduce to voids, the composite in question degenerates into a porous elastoplastic material. The results obtained in the present work are of interest, in particular, for soil mechanics.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74B05 Classical linear elasticity
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Le Quang, H., He, Q.C.: Effective pressure-sensitive elastoplastic behavior of particle-reinforced composites and porous media under isotropic loading. Int. J. Plast. 24, 343-370 (2008) · Zbl 1130.74039 · doi:10.1016/j.ijplas.2007.08.006
[2] Dvorak, G.: Micromechanics of Composite Materials. Springer, Netherlands (2012)
[3] Hashin, Z.: The elastic moduli of heterogeneous materials. ASME J. Appl. Mech. 29, 143-150 (1962) · Zbl 0102.17401 · doi:10.1115/1.3636446
[4] Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125-3131 (1962) · Zbl 0111.41401 · doi:10.1063/1.1728579
[5] Chen, W.F.: Limit Analysis and Soil Mechanics. Elsevier, New York (1975) · Zbl 0102.17401
[6] Van Tiel, J.: Convex Analysis: An Introduction Text. Wiley, New York (1984) · Zbl 0565.49001
[7] Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, New York (1988) · Zbl 0666.73010 · doi:10.1007/978-1-4612-3864-5
[8] Bousshine, L., Chaaba, A., De Saxce, G.: Softening in stress-strain curve for Drucker-Prager non-associated plasticity. Int. J. Plast. 17, 21-46 (2001) · Zbl 1004.74016 · doi:10.1016/S0749-6419(00)00017-6
[9] Hjiaj, M., Fortin, J., de Sacre, G.: A complete stress update algorithm for the non-assiciated Drucker-Prager model including treatment of the apex. Int. J. Eng. Sci. 41, 1109-1143 (2003) · doi:10.1016/S0020-7225(02)00376-2
[10] Cheng, L., Jia, Y., Oueslati, A., et al.: Plastic limit state of the hollow sphere model with non-associated Drucker-Prager material under isotropic loading. Comput. Mater. Sci. 62, 210-215 (2012)
[11] He, Q.C., Vallée, C., Lerintiu, C.: Explicit expressions for the plastic normality-flow rule associated to the Tresca yield criterion. Z. Angew. Math. Phys. 56, 357-366 (2005) · Zbl 1079.74009 · doi:10.1007/s00033-005-4121-4
[12] Vallée, C., He, Q.C., Lerintiu, C.: Convex analysis of the eigenvalues of a 3D second-order symmetric tensor. J. Elast. 83, 191-204 (2006) · Zbl 1103.74008 · doi:10.1007/s10659-005-9044-y
[13] Chu, T.Y., Hashin, Z.: Plastic behavior of composites and porous media under isotropic stress. Int. J. Eng. Sci. 9, 971-994 (1971) · Zbl 0228.73043 · doi:10.1016/0020-7225(71)90029-2
[14] Yin, Z.Y., Chang, C.S., Hicher, P.Y., et al.: Micromechanical analysis of the behavior of stiff clay. Acta Mech. Sin. 27, 1013-1022 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.