×

A comparative study between two smoothing strategies for the simulation of contact with large sliding. (English) Zbl 1308.74141

Summary: The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar element, smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) and, the use of isogeometric analysis. In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management [Z.-Q. Feng et al., Comput. Mech. 36, No. 5, 375–383 (2005; Zbl 1138.74374)]. A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics

Citations:

Zbl 1138.74374
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Al-Dojayli M, Meguid SA (2002) Accurate modeling of contact using cubic splines. Finite Elements Anal Des 38: 337-352 · Zbl 0996.65014 · doi:10.1016/S0168-874X(01)00088-9
[2] Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Meth Appl Mech Eng 92: 253-275 · Zbl 0825.76353 · doi:10.1016/0045-7825(91)90022-X
[3] Armero F, Petöcz E (1998) Formulation and analysis of conserving algorithms for dynamic contact/impact problems. Comput Methods Appl Mech Eng 158: 269-300 · Zbl 0954.74055 · doi:10.1016/S0045-7825(97)00256-9
[4] Arnoult E (2000) Modélisation numérique et approche expérimentale du contact en dynamique: application au contact aubes/carter de turboréacteur. PhD thesis, Université de Nantes, Nantes
[5] Arora JS, Chahande AI, Paeng JK (1991) Multiplier methods for engineering optimization. Int J Numer Methods Eng 32: 1485-1525 · Zbl 0752.90061 · doi:10.1002/nme.1620320706
[6] Batailly A, Legrand M, Cartraud P, Pierre C (2010) Assessment of reduced models for the detection of modal interaction through rotor stator contacts. J Sound Vib 329: 5546-5562 · doi:10.1016/j.jsv.2010.07.018
[7] Batailly A, Legrand M, Millecamps A, Garcin F (2012) Numerical-experimental comparison in the simulation of rotor/stator interaction through blade-tip/abradable coating contact. J Eng Gas Turbines Power (in press) · Zbl 1062.74628
[8] Belytschko T, Daniel WJT, Ventura GK (2002) A monolithic smoothing-gap algorithm for contact impact based on the signed distance function. Int J Numer Methods Eng 55: 101-125 · Zbl 1098.74681 · doi:10.1002/nme.568
[9] de Boor, C.; Piegl, L. (ed.), B(asic)-spline basics (1983), Washington
[10] de Saxcé G, Feng ZQ (1991) New inequality and functional for contact with friction: the implicit standard material approach. Mech Struct Mach 19(3): 301-325 · doi:10.1080/08905459108905146
[11] de Saxcé G, Feng ZQ (1998) The bi-potential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28: 225-245 · Zbl 1126.74341 · doi:10.1016/S0895-7177(98)00119-8
[12] de Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng (in press) · Zbl 1242.74104
[13] El-abbasi N, Meguid SA, Czekanski A (2001) On the modelling of smooth contact surfaces using cubic splines. Int J Numer Methods Eng 50: 953-967 · Zbl 1082.74558 · doi:10.1002/1097-0207(20010210)50:4<953::AID-NME64>3.0.CO;2-P
[14] Feng ZQ, Joli P, Cros M, Magnain B (2005) The bi-potential method applied for the modeling of dynamic problems with friction. Comput Mech 36: 375-383 · Zbl 1138.74374 · doi:10.1007/s00466-005-0663-8
[15] Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolation using moving friction cone. Comput Methods Appl Mech Eng 195: 5020-5036 · Zbl 1118.74047 · doi:10.1016/j.cma.2005.09.025
[16] Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9: 913-924 · Zbl 0329.73040 · doi:10.1002/nme.1620090410
[17] Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8: 149-276 · Zbl 0367.73075 · doi:10.1016/0045-7825(76)90018-9
[18] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194: 4135-4195 · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[19] Kikuchi N (1982) Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method. ASME, New York · Zbl 0506.73105
[20] Legrand M (2005) Modèles de prediction de l’interaction rotor/stator dans un moteur d’avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes · Zbl 0954.74055
[21] Legrand M, Pierre C, Cartraud P, Lombard JP (2009) Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction. J Sound Vib 319(1-2): 366-391 · doi:10.1016/j.jsv.2008.06.019
[22] Legrand M, Batailly A, Magnain B, Cartraud P, Pierre C (2012) Full three-dimensional investigation of structural contact interactions in turbomachines. J Sound Vib 331: 2578-2601 · Zbl 1287.20055 · doi:10.1016/j.jsv.2012.01.017
[23] Magnain B (2006) Développement d’algorithmes et d’un code de calcul pour l’étude des problèmes de l’impact et du choc. Thèse de doctorat. PhD thesis, Université d’Évry-Val d’Essonne, Évry · Zbl 1169.74509
[24] McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48: 1525-1547 · Zbl 0972.74067 · doi:10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
[25] Muñoz JJ (2008) Modelling unilateral frictionless contact using the null-space method and cubic B−Spline interpolation. Comput Methods Appl Mech Eng 197: 979-993 · Zbl 1169.74509 · doi:10.1016/j.cma.2007.09.022
[26] Padova C, Barton J, Dunn M, Manwaring S (2007) Experimental results from controlled blade tip/shroud rubs at engine speed. J Turbomach 129: 713-723 · doi:10.1115/1.2720869
[27] Piegl LA, Tiller W (2003) Circle approximation using integral b-splines. Comput-Aided Des 35: 601-607 · Zbl 1206.68328 · doi:10.1016/S0010-4485(02)00096-9
[28] Plass M, Stone M (1983) Curve-fitting with piecewise parametric cubics. Comput Graph 17(3): 229-239 · doi:10.1145/964967.801153
[29] Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 93: 601-629 · Zbl 1060.74636 · doi:10.1016/j.cma.2003.10.010
[30] Sachdeva TD, Ramarkrishnan CV (1981) A finite element solution for the two-dimensional elastic contact problems with friction. Int J Numer Methods Eng 17: 1257-1271 · Zbl 0461.73064 · doi:10.1002/nme.1620170809
[31] Sachdeva TD, Ramarkrishnan CV, Natarajan R (1981) A finite element method for the elastic contact problems. Trans ASME 103: 456-461
[32] Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87: 593-616 · Zbl 1242.74160 · doi:10.1002/nme.3126
[33] Schmiechen P (1997) Travelling wave speed coincidence. PhD thesis, Imperial College of Science, Technology and Medecine, University of London, London
[34] Signorini A (1959) Questioni di elasticità à non linearizzata e semilinearizzata (issues in nonlinear and semilinear elasticity). Rendiconti di Matematica e delle sue applicazioni 18: 95-139 · Zbl 0091.38006
[35] Simo JC, Laursen TA (1992) An augmented lagrangian treatment of contact problems involving friction. Comput Struct 42(1): 97-116 · Zbl 0755.73085 · doi:10.1016/0045-7949(92)90540-G
[36] Stadler M, Holzapfel GA, Korelc J (2003) Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng 57: 2177-2203 · Zbl 1062.74628 · doi:10.1002/nme.776
[37] Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with nurbs. Comput Methods Appl Mech Eng 200: 1100-1112 · Zbl 1225.74126 · doi:10.1016/j.cma.2010.11.020
[38] Ulaga S, Ulbin M, Flasker J (1999) Contact problems of gears using overhauser splines. Int J Mech Sci 41: 385-395 · Zbl 0985.74075 · doi:10.1016/S0020-7403(98)00073-3
[39] Wriggers P, Krstulovic-Opara L (2000) On smooth finite element discretization for frictional contact problems. J Appl Math Mech (ZAMM) 80: 77-80 · Zbl 0951.74609 · doi:10.1002/zamm.20000801320
[40] Zienkiewicz OC, Taylor RL (2000) The finite element method—volume 2: solid mechanics. Butterworth-Heinemann, Oxford
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.