×

Adding logic to the toolbox of molecular biology. (English) Zbl 1382.03055

Summary: The aim of this paper is to argue that logic can play an important role in the “toolbox” of molecular biology. We show how biochemical pathways, i.e., transitions from a molecular aggregate to another molecular aggregate, can be viewed as deductive processes. In particular, our logical approach to molecular biology – developed in the form of a natural deduction system – is centered on the notion of Curry-Howard isomorphism, a cornerstone in nineteenth-century proof-theory.

MSC:

03B80 Other applications of logic
03B47 Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics)
03B40 Combinatory logic and lambda calculus
92C40 Biochemistry, molecular biology

Software:

Coq; Zsyntax
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aliseda, A. (2006). Abductive reasoning Vol. 330. Netherlands: Springer. · Zbl 1107.03300
[2] Beall, J.C., & Restall, G. (2006). Logical pluralism. Oxford: Clarendon Press. · Zbl 1374.03001
[3] Bechtel, W. (1998). Representations and cognitive explanations: assessing the dynamicist’s challenge in cognitive science. Cognitive Science, 22, 295-318. · doi:10.1207/s15516709cog2203_2
[4] Bertot, Y., & Castéran, P. (2004). Interactive theorem proving and program development, Coq’Art: the calculus of inductive constructions. Berlin: Springer. · Zbl 1069.68095 · doi:10.1007/978-3-662-07964-5
[5] Boniolo, G. (2009). Laws of nature: the kantian approach. In M. Bitbol, P. Kerszberg, & J. Petitot (Eds.), Constituting objectivity: transcendental perspectives on modern physics, Western Ontario series in the philosophy of science (pp. 183-201). Springer. · Zbl 1270.03125
[6] Boniolo, G., D’Agostino, M., & Di Fiore, P. (2010). Zsyntax: a formal language for molecular biology with projected applications in text mining and biological prediction. PLoS ONE, 5(3), e9511. · doi:10.1371/journal.pone.0009511
[7] Boniolo, G., D’Agostino, M., Piazza, M., & Pulcini, G. (2013). A logic of non-monotonic interactions. Journal of Applied Logic, 11, 52-62. · Zbl 1270.03125 · doi:10.1016/j.jal.2012.09.002
[8] Boniolo, G., Petrovich, C., & Pisent, G. (2002). On the philosophical status of nuclear physics. Foundations of Science, 7, 425-452. · Zbl 1016.81002 · doi:10.1023/A:1020725613540
[9] Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press. · doi:10.1093/0198247044.001.0001
[10] Cartwright, N., Shomar, T., & Suárez, M. (1995). The tool-box of science. Tools for the building of models with a superconductivity example. Poznań Studies in the Philosophy of the Sciences and the Humanities, 44, 137-149.
[11] Chauduri, K., & Despeyroux, J. (2010). A hybrid linear logic for constrained transition systems with applications to molecular biology. Technical report, INRIA-HAL. Available at http://www-sop.inria.fr/members/Joelle.Despeyroux/papers/hyll_report.pdf. · JFM 60.0850.01
[12] Cook, R.T. (2010). Let a thousand flowers bloom: a tour of logical pluralism. Philosophical Compass, 5(6), 492-504. · doi:10.1111/j.1747-9991.2010.00286.x
[13] Curry, H. (1934). Functionality in combinatory logic. Proceedings of the National Academy of Science, 20, 584-590. · Zbl 0010.24201 · doi:10.1073/pnas.20.11.584
[14] D’Agostino, M., Gabbay, D.M., & Broda, K. (1999). Tableau methods for substructural logics. In M. D’Agostino, D.M. Gabbay, R. Hähnle, & J. Posegga (Eds.), Handbook of tableaux methods (pp. 397-468). Kluwer Academic. · Zbl 0972.03530
[15] D’Agostino, M., Piazza, M., & Pulcini, G. (2014). A logical calculus for controlled monotonicity. Journal of Applied Logic, 12(4), 558-569. · Zbl 1345.03102 · doi:10.1016/j.jal.2014.08.001
[16] Danos, V., & Laneve, C. (2004). Formal molecular biology. Theoretical Computer Science, 325, 69-110. · Zbl 1071.68041 · doi:10.1016/j.tcs.2004.03.065
[17] de Queiroz, R.J.G.B, de Oliveira, A.G., & Gabbay, D.M. (2011). The functional interpretation of logical deduction. London: Imperial College Press/World Scientific. · Zbl 1248.03003
[18] Gabbay, D.M. (1993). How to construct a logic for your application. In H.J. Ohlbach (Ed.), GWAI ‘92: advances in artificial intelligence of lecture notes in computer science, (Vol. 671 pp. 1-30). Berlin: Springer.
[19] Gabbay, D.M. (1994). What is a logical system? In D.M. Gabbay (Ed.), What is a logical system? (pp. 179-216). Oxford: Clarendon Press. · Zbl 0824.03004
[20] Giere, R.N. (2006). Scientific pluralism. University of Minnesota Press.
[21] Girard, J.-Y. (1995). Linear logic: its syntax and semantics. In J.-Y. Girard, Y. Lafont, & L. Regnier (Eds.), Advances in linear logic of London mathematical society lecture notes series, (Vol. 222 pp. 1-42). Cambridge University Press. · Zbl 0828.03003
[22] Girard, J.-Y., Lafont, Y., & Taylor, P. (1989). Proofs and types. Cambridge: Cambridge University Press. · Zbl 0671.68002
[23] Girard, J.Y. (1987). Linear logic. Theoretical Computer Science, 50, 1-101. · Zbl 0625.03037 · doi:10.1016/0304-3975(87)90045-4
[24] Hamilton, A. (2007). Laws of biology, laws of nature: problems and (dis)solutions. Philosophy Compass, 2(3), 592-610. · doi:10.1111/j.1747-9991.2007.00087.x
[25] Haufe, C. (2013). From necessary chances to biological laws. British Journal for the Philosophy of Science, 64(2), 279-295. · doi:10.1093/bjps/axs001
[26] Howard, W.A. (1980). The formulae-as-types notion of construction. In J.P. Seldin, & J.R. Hindley (Eds.), To H. B. Curry: essays on combinatory logic, lambda calculus and formalism (pp. 479-490). London: Academic Press.
[27] Keller, E.F. (2000). Models of and models for. Theory and practice in contemporary biology. Philosophy of Science, 67, S72—S86. · Zbl 1312.49005 · doi:10.1086/392810
[28] Kellert, S.H., Longino, H.E., & Waters, C.K. (Eds.) (2006). Scientific pluralism. University of Minnesota Press.
[29] Lipton, P. (2004). Inference to the best explanation, 2nd edn. London: Routledge.
[30] Norton, J. (2012). Approximations and idealizations: why the difference matters. Philosophy of Science, 79, 207-232. · doi:10.1086/664746
[31] Piazza, M. (2001). Exchange rules. Journal of Symbolic Logic, 66, 509-516. · Zbl 0988.03091 · doi:10.2307/2695028
[32] Raerinne, J. (2013). Stability and lawlikeness. Biology and Philosophy, 28(5), 833-851. · doi:10.1007/s10539-013-9386-y
[33] Redhead, M. (1980). Models in physics. The British Journal for the Philosophy of Science, 31, 145-163. · doi:10.1093/bjps/31.2.145
[34] Van Benthem, J. (2012). The logic of empirical theories revisited. Synthese, 186, 775-792. · Zbl 1275.03076 · doi:10.1007/s11229-011-9916-6
[35] Weisberg, M. (2013). Simulation and Similarity: using models to understand the world. Oxford: Oxford University Press. · doi:10.1093/acprof:oso/9780199933662.001.0001
[36] Winsberg, E. (2001). Simulations, models and theories: complex physical systems and their representation. Philosophy of Science, 68, S442-S454. · doi:10.1086/392927
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.