×

zbMATH — the first resource for mathematics

A posteriori performance-based comparison of three new path-following constraints for damage analysis of quasi-brittle materials. (English) Zbl 1440.74345
Summary: Using a path-following algorithm to analyze a quasi-static nonlinear structural problem involves selecting an appropriate constraint function. This function should improve the desired performance targets of the path-following algorithm such as robustness, speed, accuracy, and smoothness. In order to be able to draw a fair objective selection of a constraint function, it is necessary to collect adequate constraint equations as well as to define the performance of nonlinear methods. In this paper, three new path-following constraints applicable for damage analysis of quasi-brittle materials are proposed. Additionally, performance criteria and their numerical measures for a posteriori assessment of robustness, smoothness, accuracy, and speed of solving nonlinear problems by a path-following method are proposed. Based on the proposed criteria, the performance of the three new constraints and two existing ones is compared for two example problems. As a result, the performance measures are shown to possess an ability to clearly explore the strengths of each constraint. They establish a firm basis for the assessment of not only path-following methods but also other methods for solving nonlinear structural problems.
MSC:
74R05 Brittle damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wempner, G. A., Discrete approximations related to nonlinear theories of solids, Int. J. Solids Struct., 7, 11, 1581-1599 (1971), URL http://www.sciencedirect.com/science/article/pii/0020768371900382 · Zbl 0222.73054
[2] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 7, 529-551 (1979), URL http://www.sciencedirect.com/science/article/pii/0020768379900817 · Zbl 0408.73040
[3] Crisfield, M. A., A fast incremental-iterative solution procedure that handles “snap-through”, Comput. Struct., 13, 1-3, 55-62 (1981), URL <GotoISI>://WOS:A1981LS27000007 · Zbl 0479.73031
[4] Ramm, E., Strategies for tracing the nonlinear response near limit points, (Nonlinear Finite Element Analysis in Structural Mechanics (1981), Springer: Springer Berlin, Heidelberg), 63-89 · Zbl 0474.73043
[5] Schweizerhof, K. H.; Wriggers, P., Consistent linearization for path following methods in nonlinear fe analysis, Comput. Methods Appl. Mech. Engrg., 59, 3, 261-279 (1986), URL <GotoISI>://WOS:A1986F097800001 · Zbl 0588.73138
[6] Forde, B. W.R.; Stiemer, S. F., Improved arc length orthogonality methods for nonlinear finite element analysis, Comput. Struct., 27, 5, 625-630 (1987), URL http://www.sciencedirect.com/science/article/pii/0045794987900782 · Zbl 0623.73079
[7] Hellweg, H. B.; Crisfield, M. A., A new arc-length method for handling sharp snap-backs, Comput. Struct., 66, 5, 705-709 (1998), URL <GotoISI>://WOS:000073956900014 · Zbl 0933.74080
[8] Feng, Y. T.; Peri, D.; Owen, D. R.J., Determination of travel directions in path-following methods, Math. Comput. Modelling, 21, 7, 43-59 (1995) · Zbl 0819.73073
[9] de Souza Neto, E. A.; Feng, Y. T., On the determination of the path direction for arc-length methods in the presence of bifurcations and ‘snap-backs’, Comput. Methods Appl. Mech. Engrg., 179, 1-2, 81-89 (1999), URL http://ac.els-cdn.com/S0045782599000420/1-s2.0-S0045782599000420-main.pdf?_tid=1fbe0c5a-79af-11e6-80c1-00000aacb35e&acdnat=1473770554_97d3023559cc94d649c433179006b8cd · Zbl 1003.74025
[10] Chen, Z.; Schreyer, H. L., A numerical-solution scheme for softening problems involving total strain control, Comput. Struct., 37, 6, 1043-1050 (1990), URL <GotoISI>://WOS:A1990EP01400016
[11] Geers, M. G.D., Enhanced solution control for physically and geometrically non-linear problems. part ii - comparative performance analysis, Internat. J. Numer. Methods Engrg., 46, 2, 205-230 (1999), URL <GotoISI>://WOS:000082114300003 · Zbl 0957.74034
[12] Pohl, T.; Ramm, E.; Bischoff, M., Adaptive path following schemes for problems with softening, Finite Elem. Anal. Des., 86, 12-22 (2014)
[13] May, I. M.; Duan, Y., A local arc-length procedure for strain softening, Comput. Struct., 64, 1, 297-303 (1997) · Zbl 0918.73362
[14] Alfano, G.; Crisfield, M. A., Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches, Internat. J. Numer. Methods Engrg., 58, 7, 999-1048 (2003), URL <GotoISI>://WOS:000185796000002 · Zbl 1032.74660
[15] Lorentz, E.; Badel, P., A new path-following constraint for strain-softening finite element simulations, Internat. J. Numer. Methods Engrg., 60, 2, 499-526 (2004) · Zbl 1060.74631
[16] Gutiérrez, M. A., Energy release control for numerical simulations of failure in quasi-brittle solids, Commun. Numer. Methods. Eng., 20, 1, 19-29 (2004), URL <GotoISI>://WOS:000188168200002 · Zbl 1047.74551
[17] Verhoosel, C. V.; Remmers, J. J.C.; Gutiérrez, M. A., A dissipation-based arc-length method for robust simulation of brittle and ductile failure, Internat. J. Numer. Methods Engrg., 77, 9, 1290-1321 (2009), URL <GotoISI>://WOS:000263574500004 · Zbl 1156.74397
[18] May, S.; Vignollet, J.; de Borst, R., A new arc-length control method based on the rates of the internal and the dissipated energy, Eng. Comput., 33, 1, 100-115 (2016)
[19] Stanić, A.; Brank, B., A path-following method for elasto-plastic solids and structures based on control of plastic dissipation and plastic work, Finite Elem. Anal. Des., 123, 1-8 (2017), URL <GotoISI>://WOS:000390621700001
[20] Ritto-Corrêa, M.; Camotim, D., On the arc-length and other quadratic control methods: Established, less known and new implementation procedures, Comput. Struct., 86, 11-12, 1353-1368 (2008), URL <GotoISI>://WOS:000256285900018
[21] Stanić, A.; Brank, B.; Korelc, J., On path-following methods for structural failure problems, Comput. Mech., 58, 2, 281-306 (2016), URL <GotoISI>://WOS:000379322400006 · Zbl 1398.74407
[22] Keller, H., The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sci. Stat. Comput., 4, 4, 573-582 (1983) · Zbl 0536.65017
[23] Bellini, P. X.; Chulya, A., An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations, Comput. Struct., 26, 1, 99-110 (1987), URL http://www.sciencedirect.com/science/article/pii/0045794987902409 · Zbl 0609.73070
[24] Geers, M. G.D., Enhanced solution control for physically and geometrically non-linear problems. part i - the subplane control approach, Internat. J. Numer. Methods Engrg., 46, 2, 177-204 (1999), URL <GotoISI>://WOS:000082114300002 · Zbl 0957.74034
[25] Vandoren, B.; De Proft, K.; Simone, A.; Sluys, L. J., A novel constrained large time increment method for modelling quasi-brittle failure, Comput. Methods Appl. Mech. Engrg., 265, 148-162 (2013), URL <GotoISI>://WOS:000324005600010 · Zbl 1286.74091
[26] Schellekens, J. C.J.; de Borst, R., On the numerical integration of interface elements, Internat. J. Numer. Methods Engrg., 36, 1, 43-66 (1993), URL <GotoISI>://WOS:A1993KE09900003 · Zbl 0825.73840
[27] Vandoren, B.; De Proft, K.; Simone, A.; Sluys, L. J., Mesoscopic modelling of masonry using weak and strong discontinuities, Comput. Methods Appl. Mech. Engrg., 255, 167-182 (2013) · Zbl 1297.74100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.