zbMATH — the first resource for mathematics

On the use of strong discontinuity formulations for the modeling of preferential moisture uptake in fractured porous media. (English) Zbl 1231.76303
Summary: Cracking renders a structure vulnerable for preferential penetration of fluids and dissolved particles. Wetting may cause degradation of the material and accelerate the damage process considerably. In order to assess the degradation rate, understanding of the mutual interaction between cracking and fluid flow is crucial. The influence of (macro-) cracks on the flow field can be taken into account by either explicitly modeling them, which requires very refined finite element meshes, or by using a strong discontinuity approach, where cracks are represented as internal boundaries. In this paper, we investigate how hygric boundary conditions can be imposed along these internal boundaries, both with the generalized finite element method \((GFEM)\) and the discrete strong discontinuity approach \((DSDA)\). Hygric boundary conditions can be employed to couple the flow in the fracture and the material matrix. Several benchmark examples illustrate the performance of the proposed coupling techniques.

76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74R99 Fracture and damage
Full Text: DOI
[1] J. Alfaiate, Modelling Moisture Uptake Using Embedded Discontinuities. Tech. Rep. ICIST, DTC 12/08, Instituto Superior Técnico, Lisboa, Portugal, 2008.
[2] J. Alfaiate, P. Moonen, L.J. Sluys, On the use of DSDA and X-FEM for the modelling of discontinuities in porous media, in: E. Oñate, D.R.J. Owen (Eds.), IX International Conference on Computational Plasticity, COMPLAS IX, Barcelona, Spain, 2007.
[3] Armero, F.; Callari, C., An analysis of strong discontinuities in a saturated poro-plastic solid, Int. J. numer. methods engrg., 46, 10, 1673-1698, (1999) · Zbl 0971.74029
[4] Carmeliet, J.; Delerue, J.-F.; Vandersteen, K.; Roels, S., Three-dimensional liquid transport in concrete cracks, Int. J. numer. anal. met., 28, 671-687, (2004) · Zbl 1112.74486
[5] Carmeliet, J.; Roels, S., Determination of the isothermal moisture properties of porous building materials, J. build. phys., 24, 183-210, (2001)
[6] de Borst, R.; Remmers, J.J.C.; Needleman, A.; Abellan, M.-A., Discrete vs. smeared crack models for concrete fracture: bridging the gap, Int. J. numer. anal. met., 28, 7-8, 583-607, (2004) · Zbl 1086.74044
[7] Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Júlio, E., Towards a generalization of a discrete strong discontinuity approach, Comput. methods appl. mech. engrg., 198, 47-48, 3670-3681, (2009) · Zbl 1230.74177
[8] Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Júlio, E., A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements, Int. J. fracture, 161, 1, 97-119, (2010) · Zbl 1273.74531
[9] Dias da Costa, D.; Alfaiate, J.; Sluys, L.J.; Júlio, E., A discrete strong discontinuity approach, Engrg. fracture mech., 76, 9, 1176-1201, (2009) · Zbl 1230.74177
[10] Duarte, C.A.; Oden, J.T., H-p clouds – an h-p meshless method, Numer. methods part D. E., 12, 6, 673-705, (1996) · Zbl 0869.65069
[11] Duarte, C.A.; Kim, D.-J., Analysis and applications of a generalized finite element method with global-local enrichment functions, Comput. methods appl. mech. engrg., 197, 6-8, 487-504, (2008) · Zbl 1169.74597
[12] Durner, W., Hydraulic conductivity estimation for soils with heterogenous pore structure, Water resour. res., 30, 211-233, (1994)
[13] Larsson, R.; Runesson, K.; Sture, S., Embedded localization band in undrained soil based on regularized strong discontinuity-theory and FE-analysis, Int. J. solids struct., 33, 20-22, 3081-3101, (1996) · Zbl 0919.73279
[14] Möes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 131-150, (1999) · Zbl 0955.74066
[15] P. Moonen, Continuous-discontinuous modelling of hygrothermal damage processes in porous media, Dissertation issued by K.U. Leuven and T.U. Delft, 2009.
[16] Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water resour. res., 12, 513-522, (1976)
[17] Réthoré, J.; de Borst, R.; Abellan, M.-A., A two-scale approach for fluid flow in fractured porous media, Int. J. numer. methods engrg., 71, 7, 780-800, (2007) · Zbl 1194.76139
[18] Réthoré, J.; de Borst, R.; Abellan, M.-A., A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks, Comput. mech., 42, 2, 227-238, (2008) · Zbl 1154.76053
[19] Roels, S.; Moonen, P.; Proft, K.D.; Carmeliet, J., A coupled discrete-continuum approach to simulate moisture effects on damage processes in porous materials, Comput. methods appl. mech. engrg., 195, 52, 7139-7153, (2006) · Zbl 1331.76118
[20] Roels, S.; Vandersteen, K.; Carmeliet, J., Measuring and simulating moisture uptake in a fractured porous medium, Adv. water resour., 26, 237-246, (2003)
[21] Schrefler, B.A.; Secchi, S.; Simoni, L., On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. methods appl. mech. engrg., 195, 4-6, 444-461, (2006) · Zbl 1193.74158
[22] Segura, J.M.; Carol, I., On zero-thickness interface elements for diffusion problems, Int. J. numer. anal. met., 28, 9, 947-962, (2004) · Zbl 1075.76580
[23] K. Vandersteen, Unsaturated water flow in fractured porous dissertation issued by K.U. Leuven, 2002.
[24] Wells, G.N.; Sluys, L.J., A new method for modelling cohesive cracks using finite elements, Int. J. numer. methods engrg., 50, 2, 2667-2682, (2001) · Zbl 1013.74074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.