×

A model of contour extraction including multiple scales, flexible inhibition and attention. (English) Zbl 1254.68278

Summary: A mathematical model of contextual integration and contour extraction in the primary visual cortex developed in our recent work [Neural Netw. 17, No. 5–6, 719–735 (2004; Zbl 1051.92016)] has been significantly improved to include two fundamental additional aspects, i.e., multi-scale decomposition and attention. The model incorporates two independent paths for visual processing corresponding to two different scales. Attention from higher hierarchical levels works by modifying different properties of the network: by selecting the portion of the image to be scrutinized and the appropriate scale, by modulating the threshold of a gating mechanism, and by modifying the width and/or strength of lateral inhibition. Through computer simulations of real complex and noisy black-and-white images, we demonstrate that appropriate selection of the above factors allows accurate analysis of image contours at different levels, from global perception of the overall objects without details, down to a fine examination of minute particulars (such as the lips in a face or the fingers of a hand). Attentive reconfiguration of lateral inhibition plays a key role in the analysis of images at different detail levels.

MSC:

68T45 Machine vision and scene understanding
68U10 Computing methodologies for image processing
92C20 Neural biology

Citations:

Zbl 1051.92016
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allman, J.; Miezin, F.; McGuinness, E., Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons, Annual Review of Neuroscience, 8, 407-430 (1985)
[2] Angelucci, A.; Bressloff, P. C., Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons, Progress in Brain Research, 154, 93-120 (2006)
[3] Angelucci, A.; Bullier, J., Reaching beyond the classical receptive field of V1 neurons: Horizontal or feedback axons?, Journal of Physiology (Paris), 97, 141-154 (2003)
[4] Angelucci, A.; Levitt, J. B.; Walton, J. S.E.; Hupé, J. M.; Bullier, J.; Lund, J. S., Circuits for local and global signal integration in primary visual cortex, The Journal of Neuroscience, 22, 8633-8646 (2002)
[5] Badcock, J.; Whitworth, F.; Badcock, D.; Lovegrove, W., Low frequency filtering and the processing of local-global stimuli, Perception, 617-629 (1990)
[6] Bahcall, D. O.; Kowler, E., Attentional interference at small spatial separations, Vision Research, 39, 71-86 (1999)
[7] Bar, M., A cortical mechanism for triggering top-down facilitation in visual object recognition, Journal of Cognitive Neuroscience, 15, 600-609 (2003)
[8] Brefczynski, J. A.; De Yoe, E. A., A physiological correlate of the “spot-light” of visual attention, Nature Neuroscience, 2, 370-374 (1999)
[9] Bullier, J., Integrated model of visual processing, Brain Research Reviews, 36, 96-107 (2001)
[10] Castiello, U.; Umilta, C., Size of the attention focus and efficiency of processing, Acta Psychologica, 73, 195-209 (1990)
[11] Cavanaugh, J. R.; Bair, W.; Movshon, J. A., Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons, Journal of Neurophysiology, 88, 2547-2556 (2002)
[12] Cepeda, N. J.; Cave, K. R.; Bichot, N. P.; Kim, M., Spatial selection via feature-driven inhibition of distractor locations, Perception & Psychophysics, 60, 727-746 (1998)
[13] Crick, F., Function of the thalamic reticular complex: the searchlight hypothesis, Proceedings of the National Academy of Science USA, 81, 4586-4590 (1984)
[14] de Brecht, M.; Saiki, J., A neural network implementation of a saliency map model, Neural Networks, 19, 1467-1474 (2006) · Zbl 1178.68406
[15] De Valois, R., & De Valois, K. (1998). Spatial vision; De Valois, R., & De Valois, K. (1998). Spatial vision · Zbl 1216.92026
[16] Deco, G.; Rolls, E. T., A neurodynamical cortical model of visual attention and invariant object recognition, Vision Research, 44, 621-642 (2004)
[17] Duncan, J., Selective attention and the organization of visual information, Journal of Experimental Psychology General, 113, 501-517 (1984)
[18] Eriksen, C. W.; St James, J. D., Visual attention within and around the field of focal attention: A zoom lens model, Perception & Psychophysics, 40, 225-240 (1986)
[19] Eriksen, C. W.; Yeh, Y. Y., Allocation of attention in the visual field, Journal of Experimental Psychology Human Perception and Performance, 11, 583-597 (1985)
[20] Field, D. J.; Hayes, A.; Hess, R. F., Contour integration by the human visual system: Evidence for a local associative field, Vision Research, 33, 173-193 (1993)
[21] Gilbert, C. D.; Wiesel, T. N., Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, The Journal of Neuroscience, 9, 2432-2442 (1989)
[22] Grigorescu, C.; Petkov, N.; Westenberg, M. A., Contour detection based on non classical receptive field inhibition, IEEE Transactions on Image Processing, 12, 729-739 (2003)
[23] Grossberg, S.; Mingolla, M., Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentation, Perception & Psychophysics, 38, 141-171 (1985)
[24] Grossberg, S.; Mingolla, M.; Ross, W. D., Visual brain and visual perception: How does the cortex do perceptual grouping?, Trends in Neurosciences, 20, 106-111 (1997)
[25] Hubel, H. D.; Wiesel, T. N., Ferrier lecture: Functional architecture of macaque monkey visual cortex, Proceedings of the Royal Society of London B, 198, 1-59 (1977)
[26] Ito, M.; Gilbert, C. D., Attention modulates contextual influences in the primary visual cortex of alert monkeys, Neuron, 22, 593-604 (1999)
[27] Ito, M.; Westheimer, G.; Gilbert, C. D., Attention and perceptual learning modulate contextual influences on visual perception, Neuron, 20, 1191-1197 (1998)
[28] Joshi, G. D., & Sivaswamy, J. (2005). A multiscale approach to contour detection. In International conference on cognition and recognition; Joshi, G. D., & Sivaswamy, J. (2005). A multiscale approach to contour detection. In International conference on cognition and recognition
[29] Joshi, G. D.; Sivaswamy, J., A computational model for boundary detection, (Indian conference on computer vision, graphics & image processing (2006), Springer), 172-183
[30] Kapadia, M.; Ito, M.; Gilbert, C. D.; Westheimer, G., Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys, Neuron, 11, 843-856 (1995)
[31] Kapadia, M.; Westheimer, G.; Gilbert, C. D., Spatial distribution of contextual interactions in primary visual cortex and in visual perception, Journal of Neurophysiology, 84, 2048-2062 (2000)
[32] Knierim, J. J.; van Essen, D. C., Neuronal responses to static texture patterns in area V1 of the alert macaque monkey, Journal of Neurophysiology, 67, 961-980 (1992)
[33] La Berge, D., Spatial extent of attention to letters and words, Journal of Experimental Psychology Human Perception and Performance, 9, 371-379 (1983)
[34] Li, Z., A neural model of contour integration in the primary visual cortex, Neural Computation, 10, 903-940 (1998)
[35] Li, Z., Contextual influences in V1 as a basis for pop out and asymmetry in visual search, Proceedings of the National Academy of Sciences, 96, 10530-10535 (1999)
[36] Li, Z., Visual segmentation by contextual influences via intracortical interactions in primary visual cortex, Network: Computation in Neural System, 10, 187-212 (1999) · Zbl 0939.92009
[37] Li, Z., Computational design and non linear dynamics of a recurrent network model of the primary visual cortex, Neural Computation, 13, 1749-1780 (2001) · Zbl 0982.92004
[38] Majaj, N. J.; Pelli, D. G.; Kurshan, P.; Palomares, M., The role of spatial frequency channels in letter identification, Vision Research, 42, 1165-1184 (2002)
[39] Mermillod, M.; Guyader, N.; Chauvin, A., The coarse-to-fine hypothesis revisited: Evidence from neuro-computational modeling, Brain and Cognition, 57, 151-157 (2005)
[40] Moran, J.; Desimone, R., Selective attention gates visual processing in the extrastriate cortex, Science, 229, 782-784 (1985)
[41] Mounts, J. R.W., Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds, Perception & Psychophysics, 62, 969-983 (2002)
[42] Naito, T.; Sadakane, O.; Okamoto, M.; Sato, H., Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat, Neuroscience, 149, 962-975 (2007)
[43] Nelson, J. I.; Frost, B. J., Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex, Experimental Brain Research, 61, 54-61 (1985)
[44] Oliva, A.; Schyns, P. G., Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli, Cognitive Psychology, 34, 72-107 (1997)
[45] Ozeki, H.; Sadakane, O.; Akasaki, T.; Naito, T.; Shimegi, S.; Sato, H., Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex, The Journal of Neuroscience, 24, 1428-1438 (2004)
[46] Ozgen, E.; Payne, H. E.; Sowden, P. T.; Schyns, P. G., Retinotopic sensitisation to spatial scale: Evidence for flexible spatial frequency processing in scene perception, Vision Research, 46, 1108-1119 (2006)
[47] Palmer, S. E., Vision science: Photons to phenomenology (2002), The MIT Press: The MIT Press Cambridge, MA
[48] Papari, G., Campisi, P., Neri, A., & Petkov, N. (2006). Contour detection by multiresolution surround inhibition. In IEEE international conference on image processing; Papari, G., Campisi, P., Neri, A., & Petkov, N. (2006). Contour detection by multiresolution surround inhibition. In IEEE international conference on image processing
[49] Peyrin, C.; Chauvin, A.; Chokron, S.; Marendaz, C., Hemispheric specialization for spatial frequency processing in the analysis of natural scenes, Brain and Cognition, 58, 278-282 (2003)
[50] Peyrin, C.; Schwartz, S.; Seghier, M.; Michel, C.; Landis, T.; Vuilleumier, P., Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes, Neuroimage, 28, 464-473 (2005)
[51] Posner, M. I., & Gilbert, C. D. (1999). Attention and primary visual cortex. pp. 2585-2587; Posner, M. I., & Gilbert, C. D. (1999). Attention and primary visual cortex. pp. 2585-2587
[52] Posner, M. I.; Petersen, S. E., The attention system of the human brain, Annual Review of Neuroscience, 13, 25-42 (1990)
[53] Rockland, U.; Lund, J. S., Intrinsic laminar lattice connections in primate visual cortex, The Journal of Comparative Neurology, 216, 303-318 (1983)
[54] Rodrigues, J., & du Buf, J. M. (2004a). A vision frontend with a new disparity model. In Early cognitive vision workshop; Rodrigues, J., & du Buf, J. M. (2004a). A vision frontend with a new disparity model. In Early cognitive vision workshop
[55] Rodrigues, J.; du Buf, J. M., Visual cortex frontend: Integrating lines, edges, keypoints and disparity, (International conference on image analysis and recognition (2004), Springer: Springer Porto, Portugal), 664-671
[56] Rodrigues, J., & du Buf, J.M. (2006a). Face recognition by cortical multi-scale line and edge representations. In International conference on image analysis and recognition; Rodrigues, J., & du Buf, J.M. (2006a). Face recognition by cortical multi-scale line and edge representations. In International conference on image analysis and recognition
[57] Rodrigues, J.; du Buf, J. M., Multi-scale keypoints in V1 and beyond: Object segregation, scale selection, saliency maps and face detection, BioSystems, 86, 75-90 (2006)
[58] Schwabe, L.; Obermayer, A.; Angelucci, A.; Bressloff, P. C., The role of feedback in shaping the extra-classical receptive field of cortical neurons: A recurrent network model, The Journal of Neuroscience, 26, 9117-9129 (2006)
[59] Schyns, P. G.; Oliva, A., Flexible, diagnosticity-driven, rather than fixed, perceptually determined scale selection in scene and face recognition, Perception, 26, 1027-1038 (1997)
[60] Sengpiel, F.; Hubener, M., Visual attention: Spotlight on the primary visual cortex, Current Biology, 9, 318-321 (1999)
[61] Shulman, G.; Wilson, J., Spatial frequency and selective attention to local and global information, Perception, 16, 89-101 (1987)
[62] Simpson, W. A.; McFadden, S. M., Spatial frequency channels derived from individual differences, Vision Research, 45, 2723-2727 (2005)
[63] Slotnick, S. D.; Hopfinger, J. B.; Klein, S. A.; Sutter, E. E., Darkness beyond the light: Attentional inhibition surrounding the classical spotlight, Neuroreport, 13, 773-778 (2002)
[64] Slotnick, S. D.; Schwarzbach, J.; Yantis, S., Attentional inhibition of visual processing in human striate cortex and extrastriate cortex, Neuroimage, 19, 1602-1611 (2003)
[65] Smith, M. A.; Bair, W.; Movshon, J. A., Dynamics of suppression in macaque V1, Journal of Neuroscience, 26, 4826-4834 (2006)
[66] Somers, D. C.; Dale, A. M.; Seiffert, A. E.; Tootell, R. B., Functional MRI reveals spatially specific attention modulation in human primary visual cortex (1999), pp. 1663-1668
[67] Sullivan, T. J.; de Sa, V. R., A model of surround suppression through cortical feedback, Neural Networks, 19, 564-572 (2006) · Zbl 1098.92016
[68] Sullivan, T. J.; de Sa, V. R., Homeostatic synaptic scaling in self-organizing maps, Neural Networks, 19, 734-743 (2007) · Zbl 1102.68599
[69] Thielscher, A.; Neumann, H., Neural mechanisms of cortico.cortical interaction in texture boundary detection: A modeling approach, Neursocience, 122, 921-939 (2003)
[70] Thielscher, A.; Neumann, H., A computational model to link psychophysics and cortical cell activation patterns in human texture processing, Journal of Computational Neuroscience, 22, 255-282 (2007)
[71] Tootell, R. B.; Hadjikhani, N.; Hall, E. K.; Ledden, P. J.; Liu, A. K.; Reppas, J. B., Functional analysis of V3A and related areas in human visual cortex, Journal of Neuroscience, 17, 7060-7078 (1997)
[72] Treisman, A., Perceptual grouping and attention in visual search for features and for objects, Journal of Experimental Psychology Human Perception and Performance, 8, 194-214 (1982)
[73] Treue, S.; Maunsell, J. H.R., Attentional modulation of visual motion processing in cortical areas MT and MST, Nature, 382, 539-541 (1996)
[74] Ts’o, D. Y.; Gilbert, C. D.; Wiesel, T. N., Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, The Journal of Neuroscience, 6, 1160-1170 (1986)
[75] Ursino, M.; La Cara, G. E., A model of contextual interactions and contour detection in primary visual cortex, Neural Networks, 17, 719-735 (2004) · Zbl 1051.92016
[76] Ursino, M.; La Cara, G. E., Travelling waves and EEG patterns during epileptic seizure: Analysis with an integrate-and-fire neural network, Journal of Theoretical Biology, 242, 171-187 (2006) · Zbl 1447.92213
[77] Van Rullen, R.; Delorme, A.; Thorpe, S. J., Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation, Neurocomputing, 38-40, 1003-1009 (2001)
[78] Webb, B. S.; Tinsley, C. J.; Barraclough, N. E.; Parker, A.; Derrington, A. M., Gain control from beyond the classical receptive field in primate primary visual cortex, Visual Neuroscience, 20, 221-230 (2003)
[79] Webster, M. A.; De Valois, R., Relationship between spatial-frequency and orientation tuning of striate-cortex cells, Journal of the Optical Society of America A, Optics and Image Science, 2, 1124-1132 (1985)
[80] Wertheimer, M., Laws of organisation in perceptual forms (1938), Harcourt Brace Jovanovich: Harcourt Brace Jovanovich London
[81] Wielaard, J.; Sajda, P., Extraclassical Receptive Field phenomena and short-range connectivity in V1, Cerebral Cortex, 16, 1531-1545 (2006)
[82] Wörgotter, F.; Suder, K.; Zhao, Y.; Kerscher, N.; Eysel, U. T.; Funke, K., State-dependent receptive field restructuring in the visual cortex, Nature, 396, 165-168 (1998)
[83] Würtz, R. P.; Lourens, T., Corner detection in color images through a multiscale combination of end-stopped cortical cells, Image and Vision Computing, 18, 531-541 (2000)
[84] Yantis, S.; Schwarzbach, J.; Serences, J. T.; Carlson, R. L.; Steinmetz, M. A.; Pekar, J. J., Transient neural activity in human parietal cortex during spatial attention shifts, Nature Neuroscience, 5, 995-1002 (2002)
[85] Yazdanbakhsh, A.; Grossberg, S., Fast synchronization of perceptual grouping in laminar visual cortical circuits, Neural Networks, 17, 707-718 (2004) · Zbl 1051.92017
[86] Yen, S.; Finkel, L. H., Extraction of perceptually salient contours by striate cortical networks, Vision Research, 38, 719-741 (1998)
[87] Yeshurun, Y.; Carrasco, M., Attention improves or impairs visual performance by enhancing spatial resolution, Nature, 395, 72-75 (1998)
[88] Yeshurun, Y.; Carrasco, M., Spatial attention improves performance in spatial resolution tasks, Vision Research, 38, 293-305 (1999)
[89] Zhaoping, L., Border Ownership from Intracortical Interactions in Visual Area V2, Neuron, 47, 143-153 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.