×

zbMATH — the first resource for mathematics

A strain gradient Timoshenko beam element: application to MEMS. (English) Zbl 1323.74088
Summary: The classical continuum theory not only underestimates the stiffness of microscale structures such as microbeams but is also unable to capture the size dependency, a phenomenon observed in these structures. Hence, the non-classical continuum theories such as the strain gradient elasticity have been developed. In this paper, a Timoshenko beam finite element is developed based on the strain gradient theory and employed to evaluate the mechanical behavior of microbeams used in microelectromechanical systems. The new beam element is a comprehensive beam element that recovers the formulations of strain gradient Euler-Bernoulli beam element, modified couple stress (another non-classical theory) Timoshenko and Euler-Bernoulli beam elements, and also classical Timoshenko and Euler-Bernoulli beam elements; note that the shear-locking phenomenon will not happen for the new Timoshenko beam element. The stiffness and mass matrices of the new element are derived in closed forms by following an energy-based approach and using Hamilton’s principle. It is noted that unlike the classical beam elements, the stiffness matrix of the new element has a size-dependent nature that can capture the size-dependent behavior of microbeams. The shape functions of the newly developed beam element are determined by solving the equilibrium equations of strain gradient Timoshenko beams, which brings about a size-dependent characteristic for them. The new beam element is employed to evaluate the static deflection of a microcantilever, and the results are compared to the experimental data as well as the results obtained by using the classical beam element and the couple stress plane element. The new beam element is also implemented to calculate the static deflection, vibration frequency, and pull-in voltage of electrostatically actuated microbeams. The current results are compared to the experimental data as well as the classical FEM outcomes. It is observed that the results of the new element are in excellent agreement with the experimental data while the gap between the experimental and classical FEM results is significant.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Attia, P.; Tremblay, G.; Laval, R.; Hesto, P., Characterisation of a low-voltage actuated gold microswitch, Mater. Sci. Eng. B, 51, 263-266, (1998)
[2] Moeenfard, H., Ahmadian, M.T.: Analytical modeling of bending effect on the torsional response of electrostatically actuated micromirrors. Opt. Int. J. Light Electron Opt. (2012). doi:10.1016/j.ijleo.2012.06.025 · Zbl 1423.74487
[3] Kahrobaiyan, M.H.; Rahaeifard, M.; Ahmadian, M.T., Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope, Appl. Math. Model., 35, 5903-5919, (2011) · Zbl 1228.74040
[4] Kahrobaiyan, M.H.; Ahmadian, M.T.; Haghighi, P.; Haghighi, A., Sensitivity and resonant frequency of an AFM with sidewall and top-surface probes for both flexural and torsional modes, Int. J. Mech. Sci., 52, 1357-1365, (2010)
[5] Wu, D.H.; Chien, W.T.; Yang, C.J.; Yen, Y.T., Coupled-field analysis of piezoelectric beam actuator using FEM, Sens. Actuators A, 118, 171-176, (2005)
[6] Metz, P.; Alici, G.; Spinks, G.M., A finite element model for bending behaviour of conducting polymer electromechanical actuators, Sens. Actuators A, 130, 1-11, (2006)
[7] Coutu, R.A.; Kladitis, P.E.; Starman, L.A.; Reid, J.R., A comparison of micro-switch analytic, finite element, and experimental results, Sens. Actuators A, 115, 252-258, (2004)
[8] Chapuis, F., Bastien, F., Manceau, J.F., Casset, F., Charvet, P.L.: FEM modelling of Piezo-actuated Microswitches. In: 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006. EuroSime 2006, IEEE, 2006, pp. 1-6 · Zbl 1401.74164
[9] Tajalli, S.A.; Moghimi Zand, M.; Ahmadian, M.T., Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories, Eur. J. Mech. A. Solids, 28, 916-925, (2009) · Zbl 1176.74111
[10] Rochus, V.; Rixen, D.; Golinval, J.C., Non-conforming element for accurate modelling of MEMS, Finite Elem. Anal. Des., 43, 749-756, (2007)
[11] Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W., Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42, 475-487, (1994)
[12] Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477-1508, (2003) · Zbl 1077.74517
[13] Stölken, J.S.; Evans, A.G., A microbend test method for measuring the plasticity length scale, Acta Mater., 46, 5109-5115, (1998)
[14] Mindlin, R.D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 417-438, (1965)
[15] Mindlin, R.D.; Tiersten, H.F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448, (1962) · Zbl 0112.38906
[16] Koiter, W.T., Couple stresses in the theory of elasticity, I and II, in: nederl, Akad. Wetensch. Proc. Ser. B, 67, 17-29, (1964) · Zbl 0119.39504
[17] Fleck, N.A.; Hutchinson, J.W., Strain gradient plasticity, Adv. Appl. Mech., 33, 295-361, (1997) · Zbl 0894.73031
[18] Fleck, N.A.; Hutchinson, J.W., A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245-2271, (2001) · Zbl 1033.74006
[19] Fleck, N.A.; Hutchinson, J.W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 1825-1857, (1993) · Zbl 0791.73029
[20] Kahrobaiyan, M.H.; Asghari, M.; Rahaeifard, M.; Ahmadian, M.T., A nonlinear strain gradient beam formulation, Int. J. Eng. Sci., 49, 1256-1267, (2011) · Zbl 1423.74487
[21] Kahrobaiyan, M.H.; Rahaeifard, M.; Tajalli, S.A.; Ahmadian, M.T., A strain gradient functionally graded Euler-Bernoulli beam formulation, Int. J. Eng. Sci., 52, 65-76, (2012) · Zbl 1423.74488
[22] Wang, B.; Zhao, J.; Zhou, S., A micro scale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. A. Solids, 29, 591-599, (2010)
[23] Wang, B.; Zhou, S.; Zhao, J.; Chen, X., A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, Eur. J. Mech. A. Solids, 30, 517-524, (2011) · Zbl 1278.74103
[24] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int. J. Eng. Sci., 47, 487-498, (2009) · Zbl 1213.74190
[25] Kahrobaiyan, M.H.; Tajalli, S.A.; Movahhedy, M.R.; Akbari, J.; Ahmadian, M.T., Torsion of strain gradient bars, Int. J. Eng. Sci., 49, 856-866, (2011) · Zbl 1231.74025
[26] Asghari, M.; Kahrobaiyan, M.H.; Nikfar, M.; Ahmadian, M.T., A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory, Acta Mech., 223, 1233-1249, (2012) · Zbl 1401.74164
[27] Rahaeifard, M.; Kahrobaiyan, M.H.; Ahmadian, M.T.; Firoozbakhsh, K., Strain gradient formulation of functionally graded nonlinear beams, Int. J. Eng. Sci., 65, 49-63, (2013) · Zbl 1423.74508
[28] Tajalli, S.A.; Rahaeifard, M.; Kahrobaiyan, M.H.; Movahhedy, M.R.; Akbari, J.; Ahmadian, M.T., Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory, Compos. Struct., 102, 72-80, (2013)
[29] Vatankhah, R., Kahrobaiyan, M.H., Alasty, A., Ahmadian, M.T.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Modell. Article in press (2013) · Zbl 1426.74194
[30] Nix, W.D.; Gao, H., Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, 46, 411-425, (1998) · Zbl 0977.74557
[31] Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743, (2002) · Zbl 1037.74006
[32] Asghari, M.; Ahmadian, M.T.; Kahrobaiyan, M.H.; Rahaeifard, M., On the size-dependent behavior of functionally graded micro-beams, Mater. Des., 31, 2324-2329, (2010) · Zbl 1271.74257
[33] Asghari, M.; Kahrobaiyan, M.H.; Ahmadian, M.T., A nonlinear Timoshenko beam formulation based on the modified couple stress theory, Int. J. Eng. Sci., 48, 1749-1761, (2010) · Zbl 1231.74258
[34] Asghari M., Rahaeifard M., Kahrobaiyan M.H., Ahmadian M.T.: The modified couple stress functionally graded Timoshenko beam formulation . Mater. Des. 32, 1435-43 (2011) · Zbl 1271.74257
[35] Asghari, M.; Kahrobaiyan, M.H.; Rahaeifard, M.; Ahmadian, M.T., Investigation of the size effects in Timoshenko beams based on the couple stress theory, Arch. Appl. Mech., 81, 863-874, (2011) · Zbl 1271.74257
[36] Kahrobaiyan, M.H.; Asghari, M.; Hoore, M.; Ahmadian, M.T., Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory, J. Vib. Control, 18, 696-711, (2012) · Zbl 1348.74148
[37] Tsiatas, G.C., A new Kirchhoff plate model based on a modified couple stress theory, Int. J. Solids Struct., 46, 2757-2764, (2009) · Zbl 1167.74489
[38] Tsiatas, G.C., Yiotis, A.J.: A microstructure-dependent orthotropic plate model based on a modified couple stress theory, recent developments in boundary element methods, a volume to honour professor John T. Katsikadelis, WIT Press, Southampton, 2010, pp. 295-308 · Zbl 1430.74106
[39] Kahrobaiyan, M.H.; Asghari, M.; Rahaeifard, M.; Ahmadian, M.T., Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory, Int. J. Eng. Sci., 48, 1985-1994, (2010)
[40] Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T., Firoozbakhsh, K.: Size-dependent pull-in phenomena in nonlinear microbridges. Int. J. Mech. Sci. (2011) · Zbl 1423.74508
[41] Şimşek, M., Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, Int. J. Eng. Sci., 48, 1721-1732, (2010) · Zbl 1231.74275
[42] Fu, Y.; Zhang, J., Modeling and analysis of microtubules based on a modified couple stress theory, Phys. E, 42, 1741-1745, (2010)
[43] Rahaeifard, M.; Kahrobaiyan, M.H.; Asghari, M.; Ahmadian, M.T., Static pull-in analysis of microcantilevers based on the modified couple stress theory, Sens. Actuators A, 171, 370-374, (2011) · Zbl 1271.74257
[44] Rao S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)
[45] Darrall, B.T., Dargush, G.F., Hadjesfandiari, A.R.: Finite element Lagrange multiplier formulation for size-dependent skew-symmetric couple-stress planar elasticity. Acta Mech. 225, 195-212 (2014). doi:10.1007/s00707-013-0944-9 · Zbl 1401.74269
[46] Jensen B.D., de Boer M.P., Masters N.D., Bitsie F., LaVan D.A.: Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS. J. Microelectromech. Syst. 10, 336-46 (2001)
[47] Friedman, Z.; Kosmatka, J.B., An improved two-node Timoshenko beam finite element, Comput. Struct., 47, 473-481, (1993) · Zbl 0775.73249
[48] Kahrobaiyan, M.H., Khajehpour, M., Ahmadian, M.T.: A size-dependent beam element based on the modified couple stress theory. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, IMECE2011, November 11-17, 2011, Hyatt Regency Denver & Colorado Convention Center, USA (2011d)
[49] Huebner K.H., Dewhirst D.L., Smith D.E., Byrom T.G.: The Finite Element Method for Engineers, Fourth Edition. Wiley, New York (2001)
[50] Osterberg, P.M. : Electrostatically actuated micromechanical test structure for material property measurement, Ph.D. Dissertation, Massachusetts Institute of Thechnology (1995)
[51] Osterberg, P.M.; Senturia, S.D., M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures, J. Microelectromech. Syst., 6, 107-118, (1997)
[52] Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19, 2, April 2010. 1057-7157/\(26.00 © 2010 IEE\)
[53] Tilmans, H.A.C.; Legtenberg, R., Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. theory and performance, Sens. Actuators A, 45, 67-84, (1994)
[54] Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, London (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.