×

zbMATH — the first resource for mathematics

Dynamics of a spherical particle in an acoustic field: a multiscale approach. (English) Zbl 1323.76104
Summary: A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by L. V. King [On the acoustic radiation pressure on spheres, Proc. R. Soc. Lond., Ser. A 147, 212–240 (1934)], L. P. Gor’kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and A. A. Doinikov [Proc. R. Soc. Lond., Ser. A 447, No. 1931, 447–466 (1994; Zbl 0826.76084)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.
©2014 American Institute of Physics

MSC:
76Q05 Hydro- and aero-acoustics
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frommelt, T.; Kostur, M.; Wenzel-Schäfer, M.; Talkner, P.; Hänggi, P.; Wixforth, A., Microfluidic mixing via acoustically driven chaotic advection, Phys. Rev. Lett., 100, 034502, (2008)
[2] Alghane, M.; Fu, Y. Q.; Chen, B. X.; Li, Y.; Desmulliez, M. P. Y.; Walton, A. J., Streaming phenomena in microdroplets induced by Rayleigh surface acoustic wave, J. Appl. Phys., 109, 114901, (2011)
[3] Shirokova, N. L., Physical Principles of Ultrasonic Technology, 2, (1973), Plenum: Plenum, New York
[4] Hu, J.; Yang, J.; Xu, J., Ultrasonic trapping of small particles by sharp edges vibrating in a flexural mode, Appl. Phys. Lett., 85, 6042-6044, (2004)
[5] Li, H.; Friend, J. R.; Yeo, L. Y., Surface acoustic wave concentration of particle and bioparticle suspensions, Biomed. Microdevices, 9, 647-656, (2007)
[6] Oberti, S.; Neild, A.; Quach, R.; Dual, J., The use of acoustic radiation forces to position particles within fluid droplets, Ultrasonics, 49, 47-52, (2009)
[7] Rogers, P. R.; Friend, J. R.; Yeo, L. Y., Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet, Lab Chip, 10, 2979-2985, (2010)
[8] Barmatz, M., Overview of containerless processing technologies, MRS Proc., 9, 25-37, (1982)
[9] Groschl, M., Ultrasonic separation of suspended particles - part I: Fundamentals, Acoustica, 84, 432-447, (1998)
[10] Vandaele, V.; Lambert, P.; Delchambre, A., Non-contact handling in microassembly: Acoustical levitation, Precis. Eng., 29, 491-505, (2005)
[11] Chen, X.; Apfel, R. E., Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers, J. Acoust. Soc. Am., 99, 713-724, (1996)
[12] Friend, J.; Yeo, L. Y., Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics, Rev. Mod. Phys., 83, 647-704, (2011)
[13] Yeo, L. Y.; Friend, J. R., Surface acoustic wave microfluidics, Annu. Rev. Fluid Mech., 46, 379-406, (2013) · Zbl 1297.76147
[14] Bruus, H., Acoustofluidics 7: The acoustic radiation force on small particles, Lab Chip, 12, 1014-1021, (2012)
[15] Nyborg, W. L. M.; Mason, W. P., Acoustic streaming, Physical Acoustics, 2B, 265-331, (1965), Academic Press: Academic Press, New York
[16] Lighthill, J., Acoustic streaming, J. Sound Vib., 61, 391-418, (1978) · Zbl 0402.76066
[17] Riley, N., Steady streaming, Annu. Rev. Fluid Mech., 33, 43-65, (2001) · Zbl 0988.76031
[18] Danilov, C. D.; Mironov, M. A., Mean force on a small sphere in a sound field in a viscous fluid, J. Acoust. Soc. Am., 107, 143-153, (2000)
[19] King, L. V., On the acoustic radiation pressure on spheres, Proc. R. Soc. A, 147, 212-240, (1934)
[20] Gor’kov, L. P., On the forces acting on a small particle in an acoustical field in an ideal fluid, Sov. Phys., 6, 773-775, (1962)
[21] Westervelt, P. J., The theory of steady forces caused by sound waves, J. Acoust. Soc. Am., 23, 312-315, (1951)
[22] Danilov, C. D., Average force acting on a small sphere in a traveling-wave field in a viscous fluid, Sov. Phys. Acoust., 31, 26-28, (1985)
[23] Danilov, C. D., The mean force acting on a small body in an axisymmetric sound field in a real medium, Fluid Dyn., 21, 812-820, (1986) · Zbl 0634.76082
[24] Doinikov, A. A., Radiation force due to a spherical sound field on a rigid sphere in a viscous fluid, J. Acoust. Soc. Am., 96, 3100-3105, (1994)
[25] Doinikov, A. A., Acoustic radiation pressure on a compressible sphere in a viscous fluid, J. Fluid Mech., 267, 1-21, (1994) · Zbl 0817.76076
[26] Doinikov, A. A., Acoustic radiation pressure on a rigid sphere in a viscous fluid, Proc. R. Soc. London A, 447, 447-466, (1994) · Zbl 0826.76084
[27] Settnes, M.; Bruus, H., Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E, 85, 016327, (2012)
[28] Doinikov, A. A., Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula, J. Acoust. Soc. Am., 101, 713-721, (1997)
[29] Doinikov, A. A., Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. II. Force on a rigid sphere, J. Acoust. Soc. Am., 101, 722-730, (1997)
[30] Batchelor, G. K., An Introduction to Fluid Dynamics, (1967), Cambridge University Press · Zbl 0152.44402
[31] Nyborg, W. L., Acoustic streaming due to attenuated plane waves, J. Acoust. Soc. Am., 25, 68-75, (1953)
[32] Vanneste, J.; Bühler, O., Streaming by leaky surface acoustic waves, Proc. R. Soc. A, 467, 1779-1800, (2011) · Zbl 1228.76146
[33] Bühler, O., Waves and Mean Flows, (2009), Cambridge University Press · Zbl 1180.86001
[34] “Digital library of mathematical functions” National Institute of Standards and Technology, see . (last accessed 2012-03-23).
[35] Bradley, C. E., Acoustic streaming field structure: The influence of the radiator, J. Acoust. Soc. Am., 100, 1399-1408, (1996)
[36] Basset, A. B., On the motion of a sphere in a viscous liquid, Philos. Trans. R. Soc. A, 179, 43-63, (1888) · JFM 20.1003.01
[37] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 883-889, (1983) · Zbl 0538.76031
[38] Jenson, V. G., Viscous flow round a sphere at low Reynolds numbers < 40, Proc. R. Soc. London A, 249, 346-366, (1959) · Zbl 0088.42002
[39] Rimon, Y.; Cheng, S., Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers, Phys. Fluids, 12, 949-959, (1969) · Zbl 0181.54801
[40] Dennis, S. C. R.; Walker, J. D. A., Numerical solutions for time-dependent flow past an impulsively started sphere, Phys. Fluids, 15, 517-525, (1972) · Zbl 0239.76046
[41] Tan, M. K.; Yeo, L. Y.; Friend, J. R., Rapid fluid flow and mixing induced in microchannels using surface acoustic waves, EPL, 87, 47003-47008, (2009)
[42] Doinikov, A. A., Theory of acoustic radiation pressure for actual fluids, Phys. Rev. E, 54, 6297-6303, (1996)
[43] Xie, J.-H.; Vanneste, J., Boundary streaming with Navier boundary condition, Phys. Rev. E, 89, 063010, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.