×

Exact regularized point particle method for multiphase flows in the two-way coupling regime. (English) Zbl 1331.76123

Summary: Particulate flows have mainly been studied under the simplifying assumption of a one-way coupling regime where the disperse phase does not modify the carrier fluid. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e., by accounting for the inter-phase momentum exchange, which is certainly relevant at increasing mass loading. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. The momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere, where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped point masses, which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between the particles and the fluid which avoids any ‘ad hoc’ assumption. The approach is suited for high-efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space. We will show that hundreds of thousands of particles can be handled at an affordable computational cost, as demonstrated by a preliminary application to a particle-laden turbulent shear flow.

MSC:

76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/j.pecs.2012.07.001 · doi:10.1016/j.pecs.2012.07.001
[2] Zapryanov, Dynamics of Bubbles, Drops and Rigid Particles, Vol. 50 (1998) · Zbl 0943.76003
[3] DOI: 10.1017/S0022112010000923 · Zbl 1189.76271 · doi:10.1017/S0022112010000923
[4] DOI: 10.1016/j.ijmultiphaseflow.2009.11.001 · doi:10.1016/j.ijmultiphaseflow.2009.11.001
[5] DOI: 10.1017/S0022112059000222 · Zbl 0086.19901 · doi:10.1017/S0022112059000222
[6] DOI: 10.1063/1.1536973 · Zbl 1185.76406 · doi:10.1063/1.1536973
[7] DOI: 10.1017/jfm.2012.503 · Zbl 1284.76189 · doi:10.1017/jfm.2012.503
[8] DOI: 10.1175/JAS3492.1 · doi:10.1175/JAS3492.1
[9] DOI: 10.1017/S0022112098002821 · Zbl 0940.76026 · doi:10.1017/S0022112098002821
[10] DOI: 10.1017/S0022112007008609 · Zbl 1145.76026 · doi:10.1017/S0022112007008609
[11] DOI: 10.1017/S0022112010000029 · Zbl 1189.76293 · doi:10.1017/S0022112010000029
[12] DOI: 10.1063/1.1427919 · Zbl 1184.76197 · doi:10.1063/1.1427919
[13] DOI: 10.1017/S0022112008000797 · Zbl 1151.76610 · doi:10.1017/S0022112008000797
[14] DOI: 10.1017/CBO9780511800955 · Zbl 0958.76001 · doi:10.1017/CBO9780511800955
[15] Gatignol, J. Méc. Théor. Appl. 2 pp 143– (1983)
[16] DOI: 10.1146/annurev.fluid.36.050802.122124 · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[17] DOI: 10.1017/S0022112076001663 · Zbl 0346.76073 · doi:10.1017/S0022112076001663
[18] DOI: 10.1016/j.camwa.2011.06.028 · Zbl 1268.76045 · doi:10.1016/j.camwa.2011.06.028
[19] DOI: 10.1016/0301-9322(82)90047-7 · Zbl 0541.76041 · doi:10.1016/0301-9322(82)90047-7
[20] DOI: 10.1017/S0022112072001399 · Zbl 0252.76069 · doi:10.1017/S0022112072001399
[21] DOI: 10.1175/JAS3397.1 · doi:10.1175/JAS3397.1
[22] DOI: 10.1146/annurev.fluid.010908.165210 · Zbl 1157.76020 · doi:10.1146/annurev.fluid.010908.165210
[23] DOI: 10.1017/S002211200900648X · Zbl 1181.76081 · doi:10.1017/S002211200900648X
[24] DOI: 10.1016/j.jcp.2005.04.009 · Zbl 1154.76372 · doi:10.1016/j.jcp.2005.04.009
[25] DOI: 10.1017/S0022112005006889 · Zbl 1085.76565 · doi:10.1017/S0022112005006889
[26] DOI: 10.1007/1-4020-4977-3_1 · doi:10.1007/1-4020-4977-3_1
[27] Saffman, Vortex Dynamics (1992)
[28] DOI: 10.1146/annurev.fluid.010908.165243 · Zbl 1345.76106 · doi:10.1146/annurev.fluid.010908.165243
[29] Eckhardt, Eur. Phys. J. 157 pp 135– (2008)
[30] DOI: 10.1016/j.ijmultiphaseflow.2009.02.013 · doi:10.1016/j.ijmultiphaseflow.2009.02.013
[31] DOI: 10.1016/S0021-9991(03)00209-2 · Zbl 1097.76600 · doi:10.1016/S0021-9991(03)00209-2
[32] DOI: 10.1063/1.1288515 · Zbl 1184.76446 · doi:10.1063/1.1288515
[33] DOI: 10.1016/j.jcp.2006.11.016 · Zbl 1118.76036 · doi:10.1016/j.jcp.2006.11.016
[34] DOI: 10.1115/1.3448756 · doi:10.1115/1.3448756
[35] DOI: 10.1063/1.869100 · Zbl 1027.76582 · doi:10.1063/1.869100
[36] DOI: 10.1063/1.2363968 · doi:10.1063/1.2363968
[37] DOI: 10.1016/S0301-9322(02)00007-1 · Zbl 1136.76612 · doi:10.1016/S0301-9322(02)00007-1
[38] DOI: 10.1017/S0022112004001326 · Zbl 1065.76194 · doi:10.1017/S0022112004001326
[39] DOI: 10.1017/S0022112010005501 · Zbl 1225.76294 · doi:10.1017/S0022112010005501
[40] DOI: 10.1063/1.3241992 · Zbl 1183.76416 · doi:10.1063/1.3241992
[41] DOI: 10.1002/9780470754085 · doi:10.1002/9780470754085
[42] DOI: 10.1016/j.apnum.2007.04.011 · Zbl 1225.76218 · doi:10.1016/j.apnum.2007.04.011
[43] DOI: 10.1063/1.869059 · doi:10.1063/1.869059
[44] DOI: 10.1088/1367-2630/12/3/033040 · Zbl 06711658 · doi:10.1088/1367-2630/12/3/033040
[45] DOI: 10.1063/1.3489987 · Zbl 06421122 · doi:10.1063/1.3489987
[46] DOI: 10.1017/jfm.2011.333 · Zbl 1241.76297 · doi:10.1017/jfm.2011.333
[47] DOI: 10.1063/1.864230 · Zbl 0538.76031 · doi:10.1063/1.864230
[48] DOI: 10.1016/S0301-9322(01)00014-3 · Zbl 1137.76676 · doi:10.1016/S0301-9322(01)00014-3
[49] DOI: 10.1017/S0022112002001738 · Zbl 1152.76401 · doi:10.1017/S0022112002001738
[50] DOI: 10.1016/j.jcp.2008.11.006 · Zbl 1409.76102 · doi:10.1016/j.jcp.2008.11.006
[51] DOI: 10.1017/S0022112009994022 · Zbl 1189.76251 · doi:10.1017/S0022112009994022
[52] DOI: 10.1016/S0021-9991(02)00021-9 · Zbl 1047.76100 · doi:10.1016/S0021-9991(02)00021-9
[53] DOI: 10.1016/j.jcp.2009.01.020 · Zbl 1396.76068 · doi:10.1016/j.jcp.2009.01.020
[54] Lamb, Hydrodynamics (1993)
[55] Kim, Microhydrodynamics (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.