×

zbMATH — the first resource for mathematics

Likely cavitation and radial motion of stochastic elastic spheres. (English) Zbl 1434.74025

MSC:
74B20 Nonlinear elasticity
33B15 Gamma, beta and polygamma functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards(Applied Mathematics Series vol 55) (Washington, D.C.: U.S. Government Printing Office)
[2] Akyüz U and Ertepinar A 1998 Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells Int. J. Nonlinear Mech.34 391-404 · Zbl 1342.74069
[3] Baker M and Ericksen J L 1954 Inequalities restricting the form of stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids J. Wash. Acad. Sci.44 3335 (www.jstor.org/stable/24533303)
[4] Balakrishnan R and Shahinpoor M 1978 Finite amplitude oscillations of a hyperelastic spherical cavity Int. J. Nonlinear Mech.13 171-6 · Zbl 0384.73062
[5] Ball J M 1982 Discontinuous equilibrium solutions and cavitation in nonlinear elasticity Phil. Trans. R. Soc. A 306 557-611 · Zbl 0513.73020
[6] Bayes T 1763 An essay toward solving a problem in the doctrine of chances Phil. Trans. R. Soc.53 370-418 · Zbl 1250.60007
[7] Beatty M F 2011 Small amplitude radial oscillations of an incompressible, isotropic elastic spherical shell Math. Mech. Solids16 492-512 · Zbl 1269.74083
[8] Calderer C 1983 The dynamical behaviour of nonlinear elastic spherical shells J. Elast.13 17-47 · Zbl 0514.73104
[9] Chou-Wang M-S and Horgan C O 1989 Void nucleation and growth for a class of incompressible nonfinearly elastic materials Int. J. Solids Struct.25 1239-54 · Zbl 0703.73025
[10] Chou-Wang M-S and Horgan C O 1989 Cavitation in nonlinear elastodynamics for neo-Hookean materials Int. J. Eng. Sci.27 967-73 · Zbl 0694.73005
[11] Cidonio G, Glinka M, Dawson J I and Oreffo R O C 2019 The cell in the ink: improving biofabrication by printing stem cells for skeletal regenerative medicine Biomaterials209 10-24
[12] De Pascalis R, Parnell W J, Abrahams I D, Shearer T, Daly D M and Grundy D 2018 The inflation of viscoelastic balloons and hollow viscera Proc. R. Soc. A 474 20180102 · Zbl 1407.74024
[13] DeSimone A and Teresi L 2009 Elastic energies for nematic elastomers Eur. Phys. J. E 29 191-204
[14] Ertepinar A and Akay H U 1976 Radial oscillations of nonhomogeneous, thick-walled cylindrical and spherical shells subjected to finite deformations Int. J. Solids Struct.12 517-24 · Zbl 0332.73087
[15] Fitt D, Wyatt H, Woolley T E and Mihai L A 2019 Uncertainty quantification of elastic material responses: testing, stochastic calibration and Bayesian model selection Mech. Soft Mater.1 1-13
[16] Fond C 2001 Cavitation criterion for rubber materials: a review of void-growth models J. Polym. Sci. B 39 2081-96
[17] Freiling C 1986 Axioms of symmetry: throwing darts at the real number line J. Symb. Logic51 190-200 · Zbl 0619.03035
[18] Fried E and Sellers S 2004 Free-energy density functions for nematic elastomers J. Mech. Phys. Solids52 1671-89 · Zbl 1159.74320
[19] Gent A N 1991 Cavitation in rubber: a cautionary tale Rubber Chem. Technol.63 G49-53
[20] Gent A N and Lindley P B 1959 Internal rupture of bonded rubber cylinders in tension Proc. R. Soc. A 249 195-205
[21] Ghanem R, Higdon D and Owhadi H (ed) 2017 Handbook of Uncertainty Quantification (New York: Springer) · Zbl 1372.60001
[22] Goriely A 2017 The Mathematics and Mechanics of Biological Growth (New York: Springer) · Zbl 1398.92003
[23] Green A E and Adkins J E 1970 Large Elastic Deformations (and Nonlinear Continuum Mechanics) 2nd edn (Oxford: Oxford University Press)
[24] Grimmett G R and Stirzaker D R 2001 Probability and Random Processes 3rd edn (Oxford: Oxford University Press) · Zbl 1015.60002
[25] Heng G Z and Solecki R 1963 Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material Arch. Mech. Stosow.3 427-33 · Zbl 0151.39003
[26] Holmes D P 2019 Elasticity and stability of shape-shifting structures Curr. Opin. Colloid Interface Sci.40 118-37
[27] Horgan C O and Pence T J 1989 Cavity formation at the center of a composite incompressible nonlinearly elastic sphere J. Appl. Mech.56 302-8 · Zbl 0711.73042
[28] Horgan C O and Polignone D A 1995 Cavitation in nonlinearly elastic solids: a review Appl. Mech. Rev.48 471-85
[29] Hughes I and Hase T P A 2010 Measurements and their Uncertainties: a Practical Guide to Modern Error Analysis (Oxford: Oxford University Press) · Zbl 1205.00005
[30] Hutchens S B, Fakhouri S and Crosby A J 2016 Elastic cavitation and fracture via injection Soft Matter12 2557
[31] Jaynes E T 1957 Information theory and statistical mechanics I Phys. Rev.108 171-90 · Zbl 0084.43701
[32] Jaynes E T 1957 Information theory and statistical mechanics II Phys. Rev.106 620-30 · Zbl 0084.43701
[33] Jaynes E T 2003 Probability Theory: the Logic of Science (Cambridge: Cambridge University Press) · Zbl 1045.62001
[34] Johnson N L, Kotz S and Balakrishnan N 1994 Continuous Univariate Distributions vol 1 2nd edn (New York: Wiley) · Zbl 0811.62001
[35] Kaminski M and Lauke B 2018 Probabilistic and stochastic aspects of rubber hyperelasticity Meccanica53 2363-78
[36] Kang J, Wang C and Tan H 2018 Cavitation in inhomogeneous soft solids Soft Matter14 7979-86
[37] Knowles J K 1960 Large amplitude oscillations of a tube of incompressible elastic material Q. Appl. Math.18 71-7 · Zbl 0099.19102
[38] Knowles J K 1962 On a class of oscillations in the finite-deformation theory of elasticity J. Appl. Mech.29 283-6 · Zbl 0111.37601
[39] Knowles J K and Jakub M T 1965 Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity Arch. Ration. Mech. Anal.18 376-87 · Zbl 0128.42101
[40] Marzano M 1983 An interpretation of Baker-Ericksen inequalities in uniaxial deformation and stress Meccanica18 233-5 · Zbl 0522.73033
[41] McGrayne S B 2012 The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, an Emerged Triumphant from Two Centuries of Controversy (New Haven, CT: Yale University Press) · Zbl 1306.00004
[42] Mihai L A, Fitt D, Woolley T E and Goriely A 2019 Likely equilibria of stochastic hyperelastic spherical shells and tubes Math. Mech. Solids24 2066-82 · Zbl 1425.74196
[43] Mihai L A, Fitt D, Woolley T E and Goriely A 2019 Likely oscillatory motions of stochastic hyperelastic solids Trans. Math. Appl.3 tnz003
[44] Mihai L A, Fitt D, Woolley T E and Goriely A 2019 Likely cavitation in stochastic elasticity J. Elast.137 27-42 · Zbl 1425.74084
[45] Mihai L A and Goriely A 2017 How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity Proc. R. Soc. A 473 20170607 · Zbl 1404.74018
[46] Mihai L A, Woolley T E and Goriely A 2018 Stochastic isotropic hyperelastic materials: constitutive calibration and model selection Proc. R. Soc. A 474 20170858 · Zbl 1402.74008
[47] Mihai L A, Woolley T E and Goriely A 2019 Likely equilibria of the stochastic Rivlin cube Phil. Trans. R. Soc. A 377 20180068 · Zbl 1425.74233
[48] Mihai L A, Woolley T E and Goriely A 2019 Likely chirality of stochastic anisotropic hyperelastic tubes Int. J. Nonlinear Mech.114 9-20
[49] Moschopoulos P G 1985 The distribution of the sum of independent Gamma random variables Annals Instit. Stat. Math.37 541-4 · Zbl 0587.60015
[50] Mumford D 2000 The dawning of the age of stochasticity Mathematics: Frontiers and Perspectives ed V Arnold et al (Providence, RI: American Mathematical Society) pp 197-218 · Zbl 0962.60003
[51] Oden J T 2018 Adaptive multiscale predictive modelling Acta Numer.27 353-450 · Zbl 1430.60006
[52] Ogden R W 1997 Nonlinear Elastic Deformations 2nd edn (New York: Dover)
[53] Ostoja-Starzewski M 2007 Microstructural Randomness and Scaling in Mechanics of Materials (London: Chapman and Hall) · Zbl 1148.74002
[54] Poulain X, Lefèvre V, Lopez-Pamies O and Ravi-Chandar K 2017 Damage in elastomers: nucleation and growth of cavities, micro-cracks, and macro-cracks Int. J. Fract.205 1-21
[55] Poulain X, Lopez-Pamies O and Ravi-Chandar K 2018 Damage in elastomers: healing of internally nucleated cavities and micro-cracks Soft Matter14 4633-40
[56] Raayai-Ardakani S, Earla D R and Cohen T 2019 The intimate relationship between cavitation and fracture Soft Matter15 4999
[57] Ren J-S 2009 Dynamics and destruction of internally pressurized incompressible hyper-elastic spherical shells Int. J. Eng. Sci.47 745-53 · Zbl 1213.74118
[58] Riggs J D and Lalonde T L 2017 Handbook for Applied Modeling: Non-Gaussian and Correlated Data (Cambridge: Cambridge University Press)
[59] Robert C P 2007 The Bayesian Choice: from Decision-Theoretic Foundations to Computational Implementation 2nd edn (New York: Springer)
[60] Rodriíguez-Martiínez J A, Fernández-Sáaez J and Aera R 2015 The role of constitutive relation in the stability of hyper-elastic spherical membranes subjected to dynamic inflation Int. J. Eng. Sci.93 31-45
[61] Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech. J.27 379-423 623-59 · Zbl 1154.94303
[62] Sivaloganathan I 1991 Cavitation, the incompressible limit, and material inhomogeneity Q. Appl. Math.49 521-41 · Zbl 0756.73040
[63] Soares R M, Amaral P F T, Silva F M A and Gonçalves P B 2019 Nonlinear breathing motions and instabilities of a pressure-loaded spherical hyperelastic membrane Nonlinear Dyn.99 351-72 · Zbl 1430.74099
[64] Soize C 2000 A nonparametric model of random uncertainties for reduced matrix models in structural dynamics Probabilistic Eng. Mech.15 277-94
[65] Soize C 2001 Maximum entropy approach for modeling random uncertainties in transient elastodynamics J. Acoust. Soc. Am.109 1979-96
[66] Soize C 2006 Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators Comput. Methods Appl. Mech. Eng.195 26-64 · Zbl 1093.74065
[67] Soize C 2013 Stochastic modeling of uncertainties in computational structural dynamics—recent theoretical advances J. Sound Vib.332 2379-95
[68] Soize C 2017 Uncertainty Quantification: an Accelerated Course with Advanced Applications in Computational Engineering(Interdisciplinary Applied Mathematics Book vol 47) (New York: Springer) · Zbl 1377.60002
[69] Soni J and Goodman R 2017 A Mind at Play: How Claude Shannon Invented the Information Age (New York: Simon and Schuster) · Zbl 1386.94003
[70] Staber B and Guilleminot J 2015 Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties C. R. Méc.343 503-14
[71] Staber B and Guilleminot J 2016 Stochastic modeling of the Ogden class of stored energy functions for hyperelastic materials: the compressible case J. Appl. Math. Mech./Z. Angew. Math. Mech.97 273-95
[72] Staber B and Guilleminot J 2017 Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability J. Mech. Behav. Biomed. Mater.65 743-52
[73] Staber B and Guilleminot J 2018 A random field model for anisotropic strain energy functions and its application for uncertainty quantification in vascular mechanics Comput. Methods Appl. Mech. Eng.333 94-113 · Zbl 1440.74021
[74] Staber B, Guilleminot J, Soize C, Michopoulos J and Iliopoulos A 2019 Stochastic modeling and identification of an hyperelastic constitutive model for laminated composites Comput. Methods Appl. Mech. Eng.347 425-44 · Zbl 1440.74073
[75] Sullivan T J 2015 Introduction to Uncertainty Quantification (New York: Springer) · Zbl 1336.60002
[76] Truesdell C 1962 Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis Arch. Ration. Mech. Anal.11 106-13 · Zbl 0146.21102
[77] Truesdell C and Noll W 2004 The Nonlinear Field Theories of Mechanics 3rd edn (New York: Springer)
[78] Verron E, Khayat R E, Derdouri A and Peseux B 1999 Dynamic inflation of hyperelastic spherical membranes J. Rheol.43 1083-97
[79] Wang C C 1965 On the radial oscillations of a spherical thin shell in the finite elasticity theory Q. Appl. Math.23 270-4
[80] Wang C C and Ertepinar A 1972 Stability and vibrations of elastic thick-walled cylindrical and spherical shells subjected to pressure Int. J. Nonlinear Mech.7 539-55 · Zbl 0243.73036
[81] Warner M and Terentjev E M 2007 Liquid Crystal Elastomers (Oxford: Oxford University Press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.