# zbMATH — the first resource for mathematics

The MFS as a basis for the PIM or the HAM – comparison of numerical methods. (English) Zbl 1403.65261
Summary: The aim of this paper is to present implementation of the Method of Fundamental Solutions. Using the MFS the fundamental solution of the operators appearing in the governing equations should be known. For many engineering problems the governing equations are linear with unknown fundamental solutions or nonlinear. The purpose of this paper is implementation of the Picard Iterations Method or Homotopy Analysis Method in such case. Both methods are supported by the MFS. Some engineering problems described by linear equation with unknown fundamental solution and system of nonlinear equations are considered. The numerical experiment, solving these engineering problems, is performed using both methods. The correctness of the results obtained by both methods is checked. The conditions of the convergence of both methods are described.

##### MSC:
 65N80 Fundamental solutions, Green’s function methods, etc. for boundary value problems involving PDEs
Full Text:
##### References:
  Akella, M. R.; Kotamraju, G. R., Trefftz indirect method applied to nonlinear potential problems, Eng Anal Bound Elem, 24, 459-465, (2000) · Zbl 1005.80009  Azizian, Z. G.; Dawe, D. J., Geometrical nonlinear analysis of rectangular Mindlin plates using finite strip method, Comput Struct, 2, 423-436, (1985) · Zbl 0592.73106  Chan, C. Y.; Ke, L., Numerical computations for singular semilinear elliptic boundary value problems, Comput Math Appl, 43, 351-358, (2002) · Zbl 0999.65144  Chen, C. S.; Rashed, Y. F., Evaluation of thin plate spline based particular solutions for Helmholtz-type operators for the DRM, Mech Res Commun, 25, 2, 195-201, (1998) · Zbl 0914.65115  Chen, C.-K.; Hung, C.-I.; Lee, Z.-Y., Double side approach method to obtain solutions for transient nonlinear heat conduction using genetic algorithms, Appl Math Comput, 133, 431-444, (2002) · Zbl 1024.65114  Cheng, A. H.-D., Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions, Eng Anal Bound Elem, 24, 531-538, (2000) · Zbl 0966.65088  Cheng, Y.; McVay, D. A.; Lee, W. J., BEM for 3D unsteady-state flow problems in porous media with a finite-conductivity horizontal wellbore, Appl Numer Math, 53, 19-37, (2005) · Zbl 1117.76042  Dong, C. Y.; Lo, p. H.; Cheung, Y. K.; Lee, K. Y., Anisotropic thin plate bending problems by Trefftz boundary collocation method, Eng Anal Bound Elem, 28, 1017-1024, (2004) · Zbl 1130.74459  Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv Comput Math, 9, 69-95, (1998) · Zbl 0922.65074  Fernandes, G. R.; Venturini, W. S., Non-linear boundary element analysis of plates applied to concrete slabs, Eng Anal Bound Elem, 26, 169-181, (2002) · Zbl 1051.74051  Golberg, M. A., The method of fundamental solution for poisson׳s equation, Eng Anal Bound Elem, 16, 205-213, (1995)  Golberg, M. A.; Chen, C. S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (Golberg, M. A., Boundary integral methods - numerical and mathematical aspects, (1998), Computational Mechanics Publications South Hampton), 103-176 · Zbl 0945.65130  Golberg, M. A.; Chen, C. S.; Rashed, Y. F., The anihilator method for computing particular solutions to partial differential equations, Eng Anal Bound Elem, 23, 275-279, (1999) · Zbl 0945.65131  Goto, T.; Suzuki, M., A boundary integral equation method for nonlinear heat conduction problems with temperature-dependent material properties, Int J Heat Mass Transf, 39, 4, 823-830, (1996) · Zbl 0963.74567  Guevara-Jordan, J. M.; Rojas, S., A method of fundamental solutions for modeling porous media advective fluid flow, Appl Numer Math, 47, 449-465, (2003) · Zbl 1055.76043  Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J Geophys Res, 176, 1905-1915, (1971)  Heise, U., Numerical properties of integral equations in which the given boundary values and the sought solutions are defined on different curves, Comput Struct, 8, 199-205, (1978) · Zbl 0373.73024  Hossain, M. A.; Wilson, M., Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation, Int J Therm Sci, 41, 447-454, (2002)  Jinmu, L.; Shuyao, L., Geometrically nonlinear analysis of the shallow shell by the displacement-based boundary element formulation, Eng Anal Bound Elem, 18, 63-70, (1996)  Kansa, E. J., Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. II. solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput Math Appl, 19, 127-145, (1990) · Zbl 0692.76003  Kansa, E. J., Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. I. surface approximations and partial derivative estamates, Comput Math Appl, 19, 147-161, (1990) · Zbl 0850.76048  Karageorghis, A.; Chen, C. S.; Smyrlis, Y.-S., A matrix decomposition RBF algorithm: approximation of functions and their derivatives, Appl Numer Math, 57, 304-319, (2007) · Zbl 1107.65305  Kasab, J. J.; Karur, P. R.; Ramachandran, P. A., Quasilinear boundary element method for nonlinear Poisson type problems, Eng Anal Bound Elem, 15, 277-282, (1995)  Kikuta, M.; Togoh, H.; Tanaka, M., Boundary element analysis of nonlinear transient heat conduction problems, Comput Methods Appl Mech Eng, 62, 321-329, (1987) · Zbl 0614.73120  Kincaid, D.; Cheney, W., Numerical analysis: mathematics of scientific computing, (2002), American Mathematical Society Brooks/Cole Publishing Co., New York, USA  Kupradze, V. D.; Aleksidze, M. A., The method of functional equations for the approximate solution of certain boundary value problems, USSR Comput Methods Math Phys, 4, 82-126, (1964) · Zbl 0154.17604  Kythe, P. K., Fundamental solutions for differential operators and applications, (1996), Birkhauser Boston, USA · Zbl 0854.35118  Leitao, V. M.A., A meshless method for Kirchhoff plate bending problems, Int J Numer Methods Eng, 52, 1107-1130, (2001) · Zbl 0991.74081  Liao, S.-J., What׳s the common gound af all numerical and analytical techniques for nonlinear problems, Commun Nonlinear Sci Numer Simul, 1, 4, 26-30, (1996)  Liao, S.-J., A direct boundary element approach for unsteady non-linear heat transfer problems, Eng Anal Bound Elem, 26, 55-59, (2002) · Zbl 0995.80008  Liao, S.-J., Homotopy analysis method: a new analytical technique for nonlinear problems, Commun Nonlinear Sci Numer Simul, 2, 2, 95-100, (1997)  Liao, S.-J., A kind of approximate solution technique which does not depend upon small parameters - II. an application in fluid mechanics, Int J Non-Linear Mech, 32, 5, 822-915, (1997) · Zbl 1031.76542  Liao, S.-J., Boundary element method for general nonlinear differential operators, Eng Anal Bound Elem, 20, 2, 91-99, (1997)  Liao, S.-J., General boundary element method for Poisson equation with spatially varying conductivity, Eng Anal Bound Elem, 21, 23-38, (1998) · Zbl 0940.65134  Mathon, R.; Johnston, R. L., The approximate solution of elliptic boundary value problems by fundamental solutions, SIAM J Numer Anal, 14, 638-650, (1977) · Zbl 0368.65058  Muleshkov, A. S.; Golberg, M. A.; Chen, C. S., Particular solutions of Helmholtz-type operators using higher order polyharmonic splines, Comput Mech, 23, 411-419, (1999) · Zbl 0938.65139  Naffa, M.; Al.-Gahtani, H. J., RBF-based mashless method for large deflection of thin plates, Eng Anal Bound Elem, 31, 311-317, (2007) · Zbl 1195.74250  Nowak, A. J., Application of the multiple reciprocity BEM to nonlinear potential problems, Eng Anal Bound Elem, 16, 323-332, (1995)  Paris, F.; de Leon, S., Thin plates by the boundary element method by means of two Poisson equations, Eng Anal Bound Elem, 17, 111-122, (1996)  Prieto, I.; Iban, A. L.; Garrido, J. A., 2D analysis for geometrically non-linear elastic problems using the BEM, Eng Anal Bound Elem, 23, 247-256, (1999) · Zbl 0957.74072  Rees, D. A.; Tyvarnd, P. A., The Helmholtz equation for convection in two-dimensional porous cavities with conducting boundaries, J Eng Math, 49, 181-193, (2004) · Zbl 1041.76557  Sarler, B., Axisymmetric augmented thin plate splines, Eng Anal Bound Elem, 21, 81-85, (1998) · Zbl 0973.74647  Sarler, B.; Jelic, N.; Kovacevic, I.; Lakner, M.; Perko, J., Axisymmetric multiquadrics, Eng Anal Bound Elem, 30, 137-142, (2006) · Zbl 1195.65190  Sarler, B.; Perko, J.; Gobin, D.; Goyeau, B.; Power, H., Dual reciprocity boundary element method solution of natural convection in Darcy-Brinkman porous media, Eng Anal Bound Elem, 28, 23-41, (2004) · Zbl 1106.76407  Singh, K. M.; Tanaka, M., Dual reciprocity boundary element method analysis of nonlinear diffusion: temporal discretization, Eng Anal Bound Elem, 23, 419-433, (1999) · Zbl 0955.74074  Soares, D.; Telles, J. C.F.; Mansur, W. J., A time-domain boundary element formulation for the dynamic analysis of non-linear porous media, Eng Anal Bound Elem, 30, 363-370, (2006) · Zbl 1187.74248  Taigbenu, A. E., Green element calculations of nonlinear heat conduction with a time-dependent fundamental solution, Eng Anal Bound Elem, 28, 53-60, (2004) · Zbl 1061.80008  Tanaka, M.; Matsumoto, T.; Zheng, Z., Application of the boundary-domain element method to the pre/post-buckling problem of von karman plates, Eng Anal Bound Elem, 23, 399-404, (1999) · Zbl 0968.74600  Tanaka, M.; Matsumoto, T.; Zheng, Z.-D., Incremental analysis of finite deflection of elastic plates via boundary-domain-element method, Eng Anal Bound Elem, 17, 123-131, (1996)  Tsai, C. C.; Cheng, A. H.D.; Chen, C. S., Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators, Eng Anal Bound Elem, 33, 514-521, (2009) · Zbl 1244.65209  Tsai, C. C.; Lin, Y. C.; Young, D. L.; Atluri, S. N., Investigations on the accuracy and condition number for the method of fundamental solutions, CMES: Comput Model Eng Sci, 16, 103-114, (2006)  Tsai, C. C.; Liu, C. S.; Yeih, W. C., Fictitious time integration method of fundamental solutions with Chebyshev polynomials for solving Poisson-type nonlinear pdes, CMES: Comput Model Eng Sci, 56, 131-151, (2010) · Zbl 1231.65243  Tsai, C. C., Automatic particular solutions of arbitrary high-order splines associated with polyharmonic and poly-Helmholtz equations, Eng Anal Bound Elem, 35, 925-934, (2011) · Zbl 1259.65197  Tsai, C. C., Homotopy method of fundamental solutions for solving certain nonlinear partial differential equations, Eng Anal Bound Elem, 36, 1226-1234, (2012) · Zbl 1352.65645  Tsai, C. C., Analytical particular solutions of multiquadrics associated with polyharmonic operators, Math Probl Eng, 1-11, (2013) · Zbl 1299.65022  Uscilowska A. An isothermal gas flow in porous medium. Appl Math; 2006. Editor: Yves Papegay, INRIA, France. ISBN 2-7261-1289-7. · Zbl 1111.76039  Uscilowska A. Large deflection of a plate with Trefftz method. In: Proceedings of ICCES special symposium on meshless methods; 14-16 June 2006. Dubrovnik, Croatia.  Uscilowska, A., Application of the Trefftz method to nonlinear potential problems, CAMES, 15, 3/4, 377-390, (2008) · Zbl 1420.65131  Uscilowska, A.; Kolodziej Jan, A., Solution of the nonlinear equation for isothermal gas flows in porous medium by Trefftz method, Comput Assist Mech Eng Sci, 13, 445-456, (2006) · Zbl 1111.76039  Wang, H.; Qin, Q.-H.; Arounsavat, D., Application of hybrid Trefftz finite element method to non-linear problems of minimal surface, Int J Numer Methods Eng, 69, 1262-1277, (2007) · Zbl 1194.65033  Wang, W.; Ji, X.; Tanaka, M., A dual reciprocity boundary element aproach for the problems of large deflection of thin elastic plates, Comput Mech, 26, 58-65, (2000) · Zbl 0974.74077  Wrobel, L. C.; Brebbia, C. A., The dual reciprocity boundary element formulation for nonlinear diffusion problems, Comput Methods Appl Mech Eng, 65, 147-164, (1987) · Zbl 0612.76094  Xu, p. Q.; Kamiya, N., A formulation and solution for boundary element analysis of inhomogeneous-nonlinear problem; the case involving derivatives of unknown function, Eng Anal Bound Elem, 23, 391-397, (1999) · Zbl 0945.65133  Zhang, H-H.; Ouyang, J., Meshless analysis of heat transfer due to viscous dissipation in polymer flow, Eng Anal Bound Elem, 32, 1, 41-51, (2008) · Zbl 1244.76099  Zhu, S.; Satravaha, P., Solving nonlinear time-dependent diffusion equations with the dual reciprocity method in Laplace space, Eng Anal Bound Elem, 18, 19-27, (1996)  Zhu, T.; Zhang, J.; Atluri, P. N., A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems, Eng Anal Bound Elem., 23, 375-389, (1999) · Zbl 0957.74077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.