×

zbMATH — the first resource for mathematics

The MFS as a basis for the PIM or the HAM – comparison of numerical methods. (English) Zbl 1403.65261
Summary: The aim of this paper is to present implementation of the Method of Fundamental Solutions. Using the MFS the fundamental solution of the operators appearing in the governing equations should be known. For many engineering problems the governing equations are linear with unknown fundamental solutions or nonlinear. The purpose of this paper is implementation of the Picard Iterations Method or Homotopy Analysis Method in such case. Both methods are supported by the MFS. Some engineering problems described by linear equation with unknown fundamental solution and system of nonlinear equations are considered. The numerical experiment, solving these engineering problems, is performed using both methods. The correctness of the results obtained by both methods is checked. The conditions of the convergence of both methods are described.

MSC:
65N80 Fundamental solutions, Green’s function methods, etc. for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akella, M. R.; Kotamraju, G. R., Trefftz indirect method applied to nonlinear potential problems, Eng Anal Bound Elem, 24, 459-465, (2000) · Zbl 1005.80009
[2] Azizian, Z. G.; Dawe, D. J., Geometrical nonlinear analysis of rectangular Mindlin plates using finite strip method, Comput Struct, 2, 423-436, (1985) · Zbl 0592.73106
[3] Chan, C. Y.; Ke, L., Numerical computations for singular semilinear elliptic boundary value problems, Comput Math Appl, 43, 351-358, (2002) · Zbl 0999.65144
[4] Chen, C. S.; Rashed, Y. F., Evaluation of thin plate spline based particular solutions for Helmholtz-type operators for the DRM, Mech Res Commun, 25, 2, 195-201, (1998) · Zbl 0914.65115
[5] Chen, C.-K.; Hung, C.-I.; Lee, Z.-Y., Double side approach method to obtain solutions for transient nonlinear heat conduction using genetic algorithms, Appl Math Comput, 133, 431-444, (2002) · Zbl 1024.65114
[6] Cheng, A. H.-D., Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions, Eng Anal Bound Elem, 24, 531-538, (2000) · Zbl 0966.65088
[7] Cheng, Y.; McVay, D. A.; Lee, W. J., BEM for 3D unsteady-state flow problems in porous media with a finite-conductivity horizontal wellbore, Appl Numer Math, 53, 19-37, (2005) · Zbl 1117.76042
[8] Dong, C. Y.; Lo, p. H.; Cheung, Y. K.; Lee, K. Y., Anisotropic thin plate bending problems by Trefftz boundary collocation method, Eng Anal Bound Elem, 28, 1017-1024, (2004) · Zbl 1130.74459
[9] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv Comput Math, 9, 69-95, (1998) · Zbl 0922.65074
[10] Fernandes, G. R.; Venturini, W. S., Non-linear boundary element analysis of plates applied to concrete slabs, Eng Anal Bound Elem, 26, 169-181, (2002) · Zbl 1051.74051
[11] Golberg, M. A., The method of fundamental solution for poisson׳s equation, Eng Anal Bound Elem, 16, 205-213, (1995)
[12] Golberg, M. A.; Chen, C. S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (Golberg, M. A., Boundary integral methods - numerical and mathematical aspects, (1998), Computational Mechanics Publications South Hampton), 103-176 · Zbl 0945.65130
[13] Golberg, M. A.; Chen, C. S.; Rashed, Y. F., The anihilator method for computing particular solutions to partial differential equations, Eng Anal Bound Elem, 23, 275-279, (1999) · Zbl 0945.65131
[14] Goto, T.; Suzuki, M., A boundary integral equation method for nonlinear heat conduction problems with temperature-dependent material properties, Int J Heat Mass Transf, 39, 4, 823-830, (1996) · Zbl 0963.74567
[15] Guevara-Jordan, J. M.; Rojas, S., A method of fundamental solutions for modeling porous media advective fluid flow, Appl Numer Math, 47, 449-465, (2003) · Zbl 1055.76043
[16] Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J Geophys Res, 176, 1905-1915, (1971)
[17] Heise, U., Numerical properties of integral equations in which the given boundary values and the sought solutions are defined on different curves, Comput Struct, 8, 199-205, (1978) · Zbl 0373.73024
[18] Hossain, M. A.; Wilson, M., Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation, Int J Therm Sci, 41, 447-454, (2002)
[19] Jinmu, L.; Shuyao, L., Geometrically nonlinear analysis of the shallow shell by the displacement-based boundary element formulation, Eng Anal Bound Elem, 18, 63-70, (1996)
[20] Kansa, E. J., Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. II. solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput Math Appl, 19, 127-145, (1990) · Zbl 0692.76003
[21] Kansa, E. J., Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. I. surface approximations and partial derivative estamates, Comput Math Appl, 19, 147-161, (1990) · Zbl 0850.76048
[22] Karageorghis, A.; Chen, C. S.; Smyrlis, Y.-S., A matrix decomposition RBF algorithm: approximation of functions and their derivatives, Appl Numer Math, 57, 304-319, (2007) · Zbl 1107.65305
[23] Kasab, J. J.; Karur, P. R.; Ramachandran, P. A., Quasilinear boundary element method for nonlinear Poisson type problems, Eng Anal Bound Elem, 15, 277-282, (1995)
[24] Kikuta, M.; Togoh, H.; Tanaka, M., Boundary element analysis of nonlinear transient heat conduction problems, Comput Methods Appl Mech Eng, 62, 321-329, (1987) · Zbl 0614.73120
[25] Kincaid, D.; Cheney, W., Numerical analysis: mathematics of scientific computing, (2002), American Mathematical Society Brooks/Cole Publishing Co., New York, USA
[26] Kupradze, V. D.; Aleksidze, M. A., The method of functional equations for the approximate solution of certain boundary value problems, USSR Comput Methods Math Phys, 4, 82-126, (1964) · Zbl 0154.17604
[27] Kythe, P. K., Fundamental solutions for differential operators and applications, (1996), Birkhauser Boston, USA · Zbl 0854.35118
[28] Leitao, V. M.A., A meshless method for Kirchhoff plate bending problems, Int J Numer Methods Eng, 52, 1107-1130, (2001) · Zbl 0991.74081
[29] Liao, S.-J., What׳s the common gound af all numerical and analytical techniques for nonlinear problems, Commun Nonlinear Sci Numer Simul, 1, 4, 26-30, (1996)
[30] Liao, S.-J., A direct boundary element approach for unsteady non-linear heat transfer problems, Eng Anal Bound Elem, 26, 55-59, (2002) · Zbl 0995.80008
[31] Liao, S.-J., Homotopy analysis method: a new analytical technique for nonlinear problems, Commun Nonlinear Sci Numer Simul, 2, 2, 95-100, (1997)
[32] Liao, S.-J., A kind of approximate solution technique which does not depend upon small parameters - II. an application in fluid mechanics, Int J Non-Linear Mech, 32, 5, 822-915, (1997) · Zbl 1031.76542
[33] Liao, S.-J., Boundary element method for general nonlinear differential operators, Eng Anal Bound Elem, 20, 2, 91-99, (1997)
[34] Liao, S.-J., General boundary element method for Poisson equation with spatially varying conductivity, Eng Anal Bound Elem, 21, 23-38, (1998) · Zbl 0940.65134
[35] Mathon, R.; Johnston, R. L., The approximate solution of elliptic boundary value problems by fundamental solutions, SIAM J Numer Anal, 14, 638-650, (1977) · Zbl 0368.65058
[36] Muleshkov, A. S.; Golberg, M. A.; Chen, C. S., Particular solutions of Helmholtz-type operators using higher order polyharmonic splines, Comput Mech, 23, 411-419, (1999) · Zbl 0938.65139
[37] Naffa, M.; Al.-Gahtani, H. J., RBF-based mashless method for large deflection of thin plates, Eng Anal Bound Elem, 31, 311-317, (2007) · Zbl 1195.74250
[38] Nowak, A. J., Application of the multiple reciprocity BEM to nonlinear potential problems, Eng Anal Bound Elem, 16, 323-332, (1995)
[39] Paris, F.; de Leon, S., Thin plates by the boundary element method by means of two Poisson equations, Eng Anal Bound Elem, 17, 111-122, (1996)
[40] Prieto, I.; Iban, A. L.; Garrido, J. A., 2D analysis for geometrically non-linear elastic problems using the BEM, Eng Anal Bound Elem, 23, 247-256, (1999) · Zbl 0957.74072
[41] Rees, D. A.; Tyvarnd, P. A., The Helmholtz equation for convection in two-dimensional porous cavities with conducting boundaries, J Eng Math, 49, 181-193, (2004) · Zbl 1041.76557
[42] Sarler, B., Axisymmetric augmented thin plate splines, Eng Anal Bound Elem, 21, 81-85, (1998) · Zbl 0973.74647
[43] Sarler, B.; Jelic, N.; Kovacevic, I.; Lakner, M.; Perko, J., Axisymmetric multiquadrics, Eng Anal Bound Elem, 30, 137-142, (2006) · Zbl 1195.65190
[44] Sarler, B.; Perko, J.; Gobin, D.; Goyeau, B.; Power, H., Dual reciprocity boundary element method solution of natural convection in Darcy-Brinkman porous media, Eng Anal Bound Elem, 28, 23-41, (2004) · Zbl 1106.76407
[45] Singh, K. M.; Tanaka, M., Dual reciprocity boundary element method analysis of nonlinear diffusion: temporal discretization, Eng Anal Bound Elem, 23, 419-433, (1999) · Zbl 0955.74074
[46] Soares, D.; Telles, J. C.F.; Mansur, W. J., A time-domain boundary element formulation for the dynamic analysis of non-linear porous media, Eng Anal Bound Elem, 30, 363-370, (2006) · Zbl 1187.74248
[47] Taigbenu, A. E., Green element calculations of nonlinear heat conduction with a time-dependent fundamental solution, Eng Anal Bound Elem, 28, 53-60, (2004) · Zbl 1061.80008
[48] Tanaka, M.; Matsumoto, T.; Zheng, Z., Application of the boundary-domain element method to the pre/post-buckling problem of von karman plates, Eng Anal Bound Elem, 23, 399-404, (1999) · Zbl 0968.74600
[49] Tanaka, M.; Matsumoto, T.; Zheng, Z.-D., Incremental analysis of finite deflection of elastic plates via boundary-domain-element method, Eng Anal Bound Elem, 17, 123-131, (1996)
[50] Tsai, C. C.; Cheng, A. H.D.; Chen, C. S., Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators, Eng Anal Bound Elem, 33, 514-521, (2009) · Zbl 1244.65209
[51] Tsai, C. C.; Lin, Y. C.; Young, D. L.; Atluri, S. N., Investigations on the accuracy and condition number for the method of fundamental solutions, CMES: Comput Model Eng Sci, 16, 103-114, (2006)
[52] Tsai, C. C.; Liu, C. S.; Yeih, W. C., Fictitious time integration method of fundamental solutions with Chebyshev polynomials for solving Poisson-type nonlinear pdes, CMES: Comput Model Eng Sci, 56, 131-151, (2010) · Zbl 1231.65243
[53] Tsai, C. C., Automatic particular solutions of arbitrary high-order splines associated with polyharmonic and poly-Helmholtz equations, Eng Anal Bound Elem, 35, 925-934, (2011) · Zbl 1259.65197
[54] Tsai, C. C., Homotopy method of fundamental solutions for solving certain nonlinear partial differential equations, Eng Anal Bound Elem, 36, 1226-1234, (2012) · Zbl 1352.65645
[55] Tsai, C. C., Analytical particular solutions of multiquadrics associated with polyharmonic operators, Math Probl Eng, 1-11, (2013) · Zbl 1299.65022
[56] Uscilowska A. An isothermal gas flow in porous medium. Appl Math; 2006. Editor: Yves Papegay, INRIA, France. ISBN 2-7261-1289-7. · Zbl 1111.76039
[57] Uscilowska A. Large deflection of a plate with Trefftz method. In: Proceedings of ICCES special symposium on meshless methods; 14-16 June 2006. Dubrovnik, Croatia.
[58] Uscilowska, A., Application of the Trefftz method to nonlinear potential problems, CAMES, 15, 3/4, 377-390, (2008) · Zbl 1420.65131
[59] Uscilowska, A.; Kolodziej Jan, A., Solution of the nonlinear equation for isothermal gas flows in porous medium by Trefftz method, Comput Assist Mech Eng Sci, 13, 445-456, (2006) · Zbl 1111.76039
[60] Wang, H.; Qin, Q.-H.; Arounsavat, D., Application of hybrid Trefftz finite element method to non-linear problems of minimal surface, Int J Numer Methods Eng, 69, 1262-1277, (2007) · Zbl 1194.65033
[61] Wang, W.; Ji, X.; Tanaka, M., A dual reciprocity boundary element aproach for the problems of large deflection of thin elastic plates, Comput Mech, 26, 58-65, (2000) · Zbl 0974.74077
[62] Wrobel, L. C.; Brebbia, C. A., The dual reciprocity boundary element formulation for nonlinear diffusion problems, Comput Methods Appl Mech Eng, 65, 147-164, (1987) · Zbl 0612.76094
[63] Xu, p. Q.; Kamiya, N., A formulation and solution for boundary element analysis of inhomogeneous-nonlinear problem; the case involving derivatives of unknown function, Eng Anal Bound Elem, 23, 391-397, (1999) · Zbl 0945.65133
[64] Zhang, H-H.; Ouyang, J., Meshless analysis of heat transfer due to viscous dissipation in polymer flow, Eng Anal Bound Elem, 32, 1, 41-51, (2008) · Zbl 1244.76099
[65] Zhu, S.; Satravaha, P., Solving nonlinear time-dependent diffusion equations with the dual reciprocity method in Laplace space, Eng Anal Bound Elem, 18, 19-27, (1996)
[66] Zhu, T.; Zhang, J.; Atluri, P. N., A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems, Eng Anal Bound Elem., 23, 375-389, (1999) · Zbl 0957.74077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.