×

The equivariant Dirac cyclic cocycle. (English) Zbl 0982.58017

A. Connes and H. Moscovici [Geom. Funct. Anal. 5, No. 2, 174-243 (1995; Zbl 0960.46048)] have provided a local formula for the cyclic cohomology Chern character of a spectral triple. The power and generality of this formula make it interesting to understand the formula in the context of specific classes of examples. This article does that for any spectral triple arising from a Dirac operator on a closed even-dimensional spin manifold with a countable discrete group action that preserves the spin structure.

MSC:

58J22 Exotic index theories on manifolds
19K56 Index theory
58J42 Noncommutative global analysis, noncommutative residues
46L80 \(K\)-theory and operator algebras (including cyclic theory)

Citations:

Zbl 0960.46048
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] P. Baum and A. Connes, Chern character for discrete groups , in A fete of topology , Academic Press, Boston, MA, 1988. · Zbl 0656.55005
[2] N. Berline, E. Getzeler and M. Vergne, Heat kernel and Dirac operators , in A series of comprehensive studies in mathematics 298 , Springer-Verlag, New York, 1991.
[3] N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator , Bull. Soc. Math. France 113 (1985), 305-345. · Zbl 0592.58044
[4] A. Connes, Non-Commutative differential geometry , Inst. Hautes Études Sci. Publ. Math. 62 , (1985), 41-144. · Zbl 0592.46056 · doi:10.1007/BF02698807
[5] ——–, Non-Commutative geometry , Academic Press, New York, 1994. · Zbl 0812.53082
[6] ——–, On the Chern character of \(\theta\)-summable Fredholm modules , Comm. Math. Phys. 139 , (1991), 171-181. · Zbl 0734.55003 · doi:10.1007/BF02102733
[7] A. Connes and H. Moscovici, The local index formula in non-commutative geometry , GAFA 5 (1995), 174-243. · Zbl 0960.46048 · doi:10.1007/BF01895667
[8] ——–, Transgression and the Chern character of finite-dimensional K-Cycles , Commun. Math. Phys. 155 (1993), 103-122. · Zbl 0793.58006 · doi:10.1007/BF02100052
[9] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry , Texts Monographs Phys., Springer, New York, 1987. · Zbl 0619.47005
[10] H. Donnelly, Spectrum and the fixed point sets of isometries , I, Math. Ann. 224 (1976), 161-170. · Zbl 0319.53031 · doi:10.1007/BF01436198
[11] E. Getzler and A. Szenes, On the Chern character of a theta-summable Fredholm module , J. Funct. Anal. 84 (1989), 343-357. · Zbl 0686.46044 · doi:10.1016/0022-1236(89)90102-X
[12] M. Hitoshi, Chern character for proper \(\Gamma\)-manifolds , Proc. Sympos. Pure Math. 51 , Part 2 (1990), 221-234. · Zbl 0707.55003
[13] A. Jaffe, A. Lesniewski and K. Osterwalder, Quantum \(K\)-theory : The Chern character , Comm. Math. Phys. 118 (1988), 1-14. · Zbl 0656.58048 · doi:10.1007/BF01218474
[14] J.D. Lafferty, Y.L. Yu and W.P. Zhang, A direct geometric proof of the Lefschetz fixed point formulas , Trans. Amer. Math. Soc. 329 (1992), 571-583. · Zbl 0747.58016 · doi:10.2307/2153952
[15] H.B. Lawson, Jr. and M-L. Michelson, Spin geometry , Princeton Math. Ser. 38 , Princeton Univ. Press, Princeton, 1989.
[16] J. Roe, Elliptic operators, topology and asymptotic methods , Pitman Res. Notes Math. Ser. 179 , Longman Sci. Tech., Harlow, 1988. · Zbl 0654.58031
[17] Y.L. Yu, Local index theorem for Dirac operator , Acta Math. Sinica (N.S.) 3 (1987), 152-169. · Zbl 0643.58020 · doi:10.1007/BF02565028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.