×

Geometric construction of spline curves with tension properties. (English) Zbl 1069.41500

Summary: In this paper a class of \(C^{2}\cap FC^{3}\) spline curves possessing tension properties is described. These curves can be constructed using a simple modification of the well-known geometric construction of \(C^{4}\) quintic splines; therefore their shape can be easily controlled using the control net. Their applications in approximation and interpolation of spatial data will be discussed.

MSC:

41A05 Interpolation in approximation theory
41A35 Approximation by operators (in particular, by integral operators)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asaturyan, S.; Costantini, P.; Manni, C., Local shape preserving interpolation by space curves, IMA J. Numer. Anal., 21, 301-325 (2001) · Zbl 0976.65007
[2] Boehm, W., Curvature continuous curves and surfaces, Computer Aided Geometric Design, 2, 313-323 (1985) · Zbl 0645.53002
[3] Costantini, P., Curve and surface construction using variable degree polynomial splines, Computer Aided Geometric Design, 17, 419-446 (2000) · Zbl 0938.68128
[4] Costantini, P.; Cravero, I.; Manni, C., Constrained interpolation by Frenet frame continuous quintics, (Lyche, T.; Mazure, M.-L.; Schumaker, L. L., Curve and Surface Design: Saint-Malo 2002 (2003), Nashboro Press: Nashboro Press Brentwood), 71-82 · Zbl 1043.65024
[5] Costantini, P.; Goodman, T. N.T.; Manni, C., Constructing \(C^3\), shape preserving interpolating space curves, Adv. Comp. Math., 14, 103-127 (2001) · Zbl 0977.65005
[6] Costantini, P.; Manni, C., Shape preserving \(C^3\) interpolation: the curves case, Adv. Comp. Math., 18, 41-63 (2003) · Zbl 1018.65017
[7] Costantini, P., Manni, C., 2003b. On a Class of Geometric Splines with Tension Properties, Dipartimento di Scienze Matematiche ed Informatiche. Rapporto n.447, Università di Siena; Costantini, P., Manni, C., 2003b. On a Class of Geometric Splines with Tension Properties, Dipartimento di Scienze Matematiche ed Informatiche. Rapporto n.447, Università di Siena · Zbl 1069.41500
[8] Costantini, P.; Pelosi, F., Shape-preserving approximation by space curves, Num. Alg., 27, 219-316 (2001)
[9] Costantini, P.; Pelosi, F., Shape preserving approximation of spatial data, Adv. Comp. Math., 20, 25-51 (2004) · Zbl 1045.65010
[10] Eck, M.; Lasser, D., B-spline-Bézier representation of geometric spline curves: quartics and quintics, Comput. Math. Appl., 23, 23-39 (1992) · Zbl 0762.65004
[11] Goodman, T. N.T., Total positivity and the shape of curves, (Gasca, M.; Micchelli, C. A., Total Positivity and its Applications (1996), Kluwer: Kluwer Dordrecht), 157-186 · Zbl 0894.68159
[12] Jüttler, B., Shape preserving least-squares approximation by polynomial parametric spline curves, Computer Aided Geometric Design, 14, 731-747 (1997) · Zbl 0893.68156
[13] Kaklis, P. D.; Karavelas, M. T., Shape preserving interpolation in \(R^3\), IMA J. Numer. Anal., 17, 373-419 (1997) · Zbl 0928.65019
[14] Hoschek, J.; Lasser, D., Fundamentals of Computer Aided Geometric Design (1993), A.K. Peters: A.K. Peters Wellesley, MA · Zbl 0788.68002
[15] Pottmann, H., Projectively invariant classes of geometric continuity for CAGD, Computer Aided Geometric Design, 6, 307-322 (1989) · Zbl 0684.65011
[16] Sablonnière, P., Spline and Bézier polygons associated with a polynomial spline curve, Computer-Aided Design, 10, 257-261 (1978)
[17] Sauer, R., Differenzengeometrie (1970), Springer: Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.