×

The multiscale hybrid mixed method in general polygonal meshes. (English) Zbl 1440.65177

Summary: This work extends the general form of the multiscale hybrid-mixed (MHM) method for the second-order Laplace (Darcy) equation to general non-conforming polygonal meshes. The main properties of the MHM method, i.e., stability, optimal convergence, and local conservation, are proven independently of the geometry of the elements used for the first level mesh. More precisely, it is proven that piecewise polynomials of degree \(k\) and \(k+1\), \(k \geq 0\), for the Lagrange multipliers (flux), along with continuous piecewise polynomial interpolations of degree \(k+1\) posed on second-level sub-meshes are stable if the latter is fine enough with respect to the mesh for the Lagrange multiplier. We provide an explicit sufficient condition for this restriction. Also, we prove that the error converges with order \(k+1\) and \(k+2\) in the broken \(H^1\) and \(L^2\) norms, respectively, under usual regularity assumptions, and that such estimates also hold for non-convex; or even non-simply connected elements. Numerical results confirm the theoretical findings and illustrate the gain that the use of multiscale functions provides.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35J15 Second-order elliptic equations
35R09 Integro-partial differential equations
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Achdou, Y.; Japhet, C.; Maday, Y.; Nataf, F., A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case, Numer. Math., 92, 4, 593-620 (2002) · Zbl 1019.65086 · doi:10.1007/s002110100336
[2] Araya, R.; Harder, C.; Paredes, D.; Valentin, F., Multiscale hybrid-mixed method, SIAM J. Numer. Anal., 51, 6, 3505-3531 (2013) · Zbl 1296.65152 · doi:10.1137/120888223
[3] Araya, R.; Harder, C.; Poza, A.; Valentin, F., Multiscale hybrid-mixed method for the Stokes and Brinkman equations—the method, Comput. Methods Appl. Mech. Eng., 324, 29-53 (2017) · Zbl 1439.76046 · doi:10.1016/j.cma.2017.05.027
[4] Arbogast, T.; Pencheva, G.; Wheeler, MF; Yotov, I., A multiscale mortar mixed finite element method, SIAM Multiscale Model. Simul., 6, 319-346 (2007) · Zbl 1322.76039 · doi:10.1137/060662587
[5] Babuska, I.; Osborn, E., Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20, 3, 510-536 (1983) · Zbl 0528.65046 · doi:10.1137/0720034
[6] Beirão da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 8, 1541-1573 (2014) · Zbl 1291.65336 · doi:10.1142/S021820251440003X
[7] Beirao da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[8] Cangiani, A.; Dong, EH; Georgoulis, A.; Houston, P., hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (2017), Berlin: Springer, Berlin · Zbl 1382.65307
[9] Cangiani, A.; Georgoulis, E.; Houston, P., \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24, 10, 2009-2041 (2014) · Zbl 1298.65167 · doi:10.1142/S0218202514500146
[10] Cockburn, B.; Di Pietro, D.; Ern, A., Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal., 50, 3, 635-650 (2016) · Zbl 1341.65045 · doi:10.1051/m2an/2015051
[11] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 2, 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[12] Coutinho, ALGA; Franca, LP; Valentin, F., Numerical multiscale methods, Int. J. Numer. Methods Fluids, 70, 4, 403-419 (2012) · Zbl 1412.65206 · doi:10.1002/fld.2727
[13] Crouzeix, M.; Raviart, PA, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Revue française d’automatique, informatique, recherche opérationnelle. Mathématique, 7, 3, 33-75 (1973) · Zbl 0302.65087 · doi:10.1051/m2an/197307R300331
[14] Di Pietro, DA; Droniou, J., A hybrid high-order method for Leray-Lions elliptic equations on general meshes, Math. Comput., 86, 307, 2159-2191 (2017) · Zbl 1364.65224 · doi:10.1090/mcom/3180
[15] Duran, O., Devloo, P.R.B., Gomes, A.T.A., Valentin, F.: A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. Technical report HAL-01868853, INRIA (2018) · Zbl 1441.76058
[16] E, W., Engquist, B.: The heterogeneous multi-scale methods. Commun. Math. Sci. 1, 87-133 (2003) · Zbl 1093.35012
[17] Efendiev, YR; Hou, TY; Wu, XH, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37, 3, 888-910 (2000) · Zbl 0951.65105 · doi:10.1137/S0036142997330329
[18] Ern, A.; Guermond, J-L, Theory and Practice of Finite Alements (2004), New York: Springer, New York · Zbl 1059.65103
[19] Ern, A.; Pietro, DDA, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes, IMA J. Numer. Anal., 37, 1, 40-63 (2017) · Zbl 1433.65285 · doi:10.1093/imanum/drw003
[20] Farhat, C.; Harari, I.; Franca, LP, The discontinuous enrichment method, Comput. Methods Appl. Mech. Eng., 190, 48, 6455-6479 (2001) · Zbl 1002.76065 · doi:10.1016/S0045-7825(01)00232-8
[21] Farhat, C.; Mandel, J.; Roux, F-X, Optimal convergence properties of the FETI domain decomposition method, Commun. Numer. Methods Eng., 115, 365-385 (1994)
[22] Gander, MJ; Japhet, C.; Maday, Y.; Nataf, F.; Erhel, J.; Gander, MJ; Halpern, L.; Pichot, G.; Sassi, T.; Widlund, OB, A new cement to glue nonconforming grids with Robin interface conditions: the finite element case, Domain Decomposition Methods in Science and Engineering, 259-266 (2005), Berlin: Springer, Berlin · Zbl 1067.65144
[23] Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: Glowinski, R., Golub, G.H., Meurant, G.A., Périaux, J. (eds.) First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144-172. SIAM, Philadelphia (1988) · Zbl 0661.65105
[24] Grisvard, P., Elliptic Problems in Non-smooth Domains (1985), London: Pitman Publishing, London · Zbl 0695.35060
[25] Harder, C.; Madureira, AL; Valentin, F., A hybrid-mixed method for elasticity, ESAIM Math. Model. Numer. Anal., 50, 2, 311-336 (2016) · Zbl 1381.74192 · doi:10.1051/m2an/2015046
[26] Harder, C.; Paredes, D.; Valentin, F., A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, J. Comput. Phys., 245, 107-130 (2013) · Zbl 1349.76214 · doi:10.1016/j.jcp.2013.03.019
[27] Harder, C.; Paredes, D.; Valentin, F., On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients, SIAM Multiscale Model. Simul., 13, 2, 491-518 (2015) · Zbl 1317.65222 · doi:10.1137/130938499
[28] Harder, C.; Valentin, F.; Barrenechea, GR; Brezzi, F.; Cangiani, A.; Georgoulis, EH, Foundations of the MHM method, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (2016), Berlin: Springer, Berlin
[29] Hou, TY; Wu, X.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., 68, 227, 913-943 (1999) · Zbl 0922.65071 · doi:10.1090/S0025-5718-99-01077-7
[30] Hughes, TJR, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[31] Lanteri, S.; Paredes, D.; Scheid, C.; Valentin, F., The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media, SIAM Multiscale Model. Simul., 16, 4, 1648-1683 (2018) · Zbl 1412.65188 · doi:10.1137/16M110037X
[32] Malqvist, A.; Peterseim, D., Localization of elliptic multiscale problems, Math. Comput., 83, 290, 2583-2603 (2014) · Zbl 1301.65123 · doi:10.1090/S0025-5718-2014-02868-8
[33] Paredes, D.; Valentin, F.; Versieux, HM, On the robustness of multiscale hybrid-mixed methods, Math. Comput., 86, 304, 525-548 (2017) · Zbl 1355.65159 · doi:10.1090/mcom/3108
[34] Raviart, PA; Thomas, JM, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., 31, 138, 391-413 (1977) · Zbl 0364.65082
[35] Sangalli, G., Capturing small scales in elliptic problems using a residual-free bubbles finite element method, SIAM Multiscale Model. Simul., 1, 3, 485-503 (2003) · Zbl 1032.65131 · doi:10.1137/S1540345902411402
[36] Veeser, A.; Verfurth, R., Poincaré constants for finite element stars, IMA J. Numer. Anal., 32, 1, 30-47 (2012) · Zbl 1235.65127 · doi:10.1093/imanum/drr011
[37] Zheng, W.; Qi, H., On Friedrichs-Poincaré-type inequalities, J. Math. Anal. Appl., 304, 2, 542-551 (2005) · Zbl 1076.26015 · doi:10.1016/j.jmaa.2004.09.066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.