×

On complexity of holographic flavors. (English) Zbl 1384.81088

Summary: Quantum complexity of a thermofield double state in a strongly coupled quantum field theory has been argued to be holographically related to the action evaluated on the Wheeler-DeWitt patch. The growth rate of quantum complexity in systems dual to Einstein-Hilbert gravity saturates a bound which follows from the Heisenberg uncertainty principle. We consider corrections to the growth rate in models with flavor degrees of freedom. They are realized by adding a small number of flavor branes to the system. Holographically, such corrections come from the DBI action of the flavor branes evaluated on the Wheeler-DeWitt patch. We relate corrections to the growth of quantum complexity to corrections to the mass of the system, and observe that the bound on the growth rate is never violated.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Lloyd, Ultimate physical limits to computation, Nature406 (2000) 1047 [quant-ph/9908043].
[2] D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP11 (2017) 188 [arXiv:1709.10184] [INSPIRE]. · Zbl 1383.81191 · doi:10.1007/JHEP11(2017)188
[3] W. Cottrell and M. Montero, Complexity is Simple, arXiv:1710.01175 [INSPIRE]. · Zbl 1387.81308
[4] J. Couch, S. Eccles, W. Fischler and M.-L. Xiao, Holographic complexity and non-commutative gauge theory, arXiv:1710.07833 [INSPIRE]. · Zbl 1388.81647
[5] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
[6] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE]. · doi:10.1103/PhysRevLett.116.191301
[7] T. Prudencio, T.M. Rocha Filho and A.E. Santana, Thermofield qubits, generalized expectations and quantum information protocols, arXiv:1404.5542 [INSPIRE].
[8] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
[9] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
[10] D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys.88 (2016) 015002 [arXiv:1409.1231] [INSPIRE]. · doi:10.1103/RevModPhys.88.015002
[11] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP03 (2015) 051 [arXiv:1409.8180] [INSPIRE]. · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[12] L. Susskind, Entanglement is not enough, Fortsch. Phys.64 (2016) 49 [arXiv:1411.0690] [INSPIRE]. · Zbl 1429.81021 · doi:10.1002/prop.201500095
[13] L. Susskind, ER=EPR, GHZ and the consistency of quantum measurements, Fortsch. Phys.64 (2016) 72 [arXiv:1412.8483] [INSPIRE]. · Zbl 1429.81022 · doi:10.1002/prop.201500094
[14] E. Halyo, Complexity Near Horizons, arXiv:1506.06611 [INSPIRE].
[15] L. Susskind, The Typical-State Paradox: Diagnosing Horizons with Complexity, Fortsch. Phys.64 (2016) 84 [arXiv:1507.02287] [INSPIRE]. · Zbl 1429.81023 · doi:10.1002/prop.201500091
[16] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett.115 (2015) 261602 [arXiv:1507.07555] [INSPIRE]. · doi:10.1103/PhysRevLett.115.261602
[17] M. Alishahiha, Holographic Complexity, Phys. Rev.D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].
[18] J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP01 (2016) 084 [arXiv:1509.09291] [INSPIRE]. · Zbl 1388.83543 · doi:10.1007/JHEP01(2016)084
[19] J.L.F. Barbon and J. Martin-Garcia, Holographic Complexity Of Cold Hyperbolic Black Holes, JHEP11 (2015) 181 [arXiv:1510.00349] [INSPIRE]. · Zbl 1388.83382 · doi:10.1007/JHEP11(2015)181
[20] D. Momeni, S.A.H. Mansoori and R. Myrzakulov, Holographic Complexity in Gauge/String Superconductors, Phys. Lett.B 756 (2016) 354 [arXiv:1601.03011] [INSPIRE]. · Zbl 1400.81165 · doi:10.1016/j.physletb.2016.03.031
[21] V. Vanchurin, Dual Field Theories of Quantum Computation, JHEP06 (2016) 001 [arXiv:1603.07982] [INSPIRE]. · doi:10.1007/JHEP06(2016)001
[22] L. Susskind, Copenhagen vs Everett, Teleportation and ER=EPR, Fortsch. Phys.64 (2016) 551 [arXiv:1604.02589] [INSPIRE]. · Zbl 1339.81010 · doi:10.1002/prop.201600036
[23] G. Dvali, C. Gomez, D. Lüst, Y. Omar and B. Richter, Universality of Black Hole Quantum Computing, Fortsch. Phys.65 (2017) 46 [arXiv:1605.01407] [INSPIRE]. · Zbl 1371.83096 · doi:10.1002/prop.201600111
[24] W. Chemissany and T.J. Osborne, Holographic fluctuations and the principle of minimal complexity, JHEP12 (2016) 055 [arXiv:1605.07768] [INSPIRE]. · Zbl 1390.83044 · doi:10.1007/JHEP12(2016)055
[25] R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black holes, JHEP09 (2016) 161 [arXiv:1606.08307] [INSPIRE]. · Zbl 1390.83180 · doi:10.1007/JHEP09(2016)161
[26] M. Miyaji, Butterflies from Information Metric, JHEP09 (2016) 002 [arXiv:1607.01467] [INSPIRE]. · Zbl 1390.83217 · doi:10.1007/JHEP09(2016)002
[27] S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, arXiv:1607.05256 [INSPIRE].
[28] B. Swingle and J. McGreevy, Mixed s-sourcery: Building many-body states using bubbles of Nothing, Phys. Rev.B 94 (2016) 155125 [arXiv:1607.05753] [INSPIRE]. · doi:10.1103/PhysRevB.94.155125
[29] A.R. Brown, L. Susskind and Y. Zhao, Quantum Complexity and Negative Curvature, Phys. Rev.D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].
[30] M. Axenides, E. Floratos and S. Nicolis, The quantum cat map on the modular discretization of extremal black hole horizons, arXiv:1608.07845 [INSPIRE]. · Zbl 1336.83023
[31] D. Momeni, M. Faizal, S. Bahamonde, A. Myrzakul and R. Myrzakulov, A Holographic Bound for D3-Brane, Eur. Phys. J.C 77 (2017) 391 [arXiv:1608.08819] [INSPIRE]. · doi:10.1140/epjc/s10052-017-4957-8
[32] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev.D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
[33] N.S. Mazhari, D. Momeni, S. Bahamonde, M. Faizal and R. Myrzakulov, Holographic Complexity and Fidelity Susceptibility as Holographic Information Dual to Different Volumes in AdS, Phys. Lett.B 766 (2017) 94 [arXiv:1609.00250] [INSPIRE]. · Zbl 1397.83076 · doi:10.1016/j.physletb.2016.12.060
[34] O. Ben-Ami and D. Carmi, On Volumes of Subregions in Holography and Complexity, JHEP11 (2016) 129 [arXiv:1609.02514] [INSPIRE]. · Zbl 1390.83087 · doi:10.1007/JHEP11(2016)129
[35] J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP03 (2017) 119 [arXiv:1610.02038] [INSPIRE]. · Zbl 1377.83039 · doi:10.1007/JHEP03(2017)119
[36] D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP04 (2017) 121 [arXiv:1610.04903] [INSPIRE]. · Zbl 1378.81123 · doi:10.1007/JHEP04(2017)121
[37] S. Chapman, H. Marrochio and R.C. Myers, Complexity of Formation in Holography, JHEP01 (2017) 062 [arXiv:1610.08063] [INSPIRE]. · Zbl 1373.83052 · doi:10.1007/JHEP01(2017)062
[38] H. Huang, X.-H. Feng and H. Lü, Holographic Complexity and Two Identities of Action Growth, Phys. Lett.B 769 (2017) 357 [arXiv:1611.02321] [INSPIRE]. · Zbl 1370.83054 · doi:10.1016/j.physletb.2017.04.011
[39] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP03 (2017) 118 [arXiv:1612.00433] [INSPIRE]. · Zbl 1377.81160 · doi:10.1007/JHEP03(2017)118
[40] W.-J. Pan and Y.-C. Huang, Holographic complexity and action growth in massive gravities, Phys. Rev.D 95 (2017) 126013 [arXiv:1612.03627] [INSPIRE].
[41] S. Fischetti and T. Wiseman, A Bound on Holographic Entanglement Entropy from Inverse Mean Curvature Flow, Class. Quant. Grav.34 (2017) 125005 [arXiv:1612.04373] [INSPIRE]. · Zbl 1367.83014 · doi:10.1088/1361-6382/aa6ad0
[42] A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav.34 (2017) 105004 [arXiv:1612.05439] [INSPIRE]. · Zbl 1369.83030 · doi:10.1088/1361-6382/aa6925
[43] A.R. Brown and L. Susskind, The Second Law of Quantum Complexity, arXiv:1701.01107 [INSPIRE].
[44] S.P. Jordan, Fast quantum computation at arbitrarily low energy, Phys. Rev.A 95 (2017) 032305 [arXiv:1701.01175] [INSPIRE]. · doi:10.1103/PhysRevA.95.032305
[45] S. Banerjee, J. Erdmenger and D. Sarkar, Connecting Fisher information to bulk entanglement in holography, arXiv:1701.02319 [INSPIRE]. · Zbl 1396.81160
[46] K.-Y. Kim, C. Niu and R.-Q. Yang, Surface Counterterms and Regularized Holographic Complexity, JHEP09 (2017) 042 [arXiv:1701.03706] [INSPIRE].
[47] S.-J. Wang, X.-X. Guo and T. Wang, Maximal volume behind horizons without curvature singularity, arXiv:1702.05246 [INSPIRE].
[48] Y. Zhao, Complexity, boost symmetry and firewalls, arXiv:1702.03957 [INSPIRE].
[49] M. Flory, A complexity/fidelity susceptibility g-theorem for AdS3/BCFT2, JHEP06 (2017) 131 [arXiv:1702.06386] [INSPIRE]. · Zbl 1380.81315 · doi:10.1007/JHEP06(2017)131
[50] R.-G. Cai, M. Sasaki and S.-J. Wang, Action growth of charged black holes with a single horizon, Phys. Rev.D 95 (2017) 124002 [arXiv:1702.06766] [INSPIRE].
[51] M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia, On complexity for F (R) and critical gravity, JHEP05 (2017) 009 [arXiv:1702.06796] [INSPIRE]. · Zbl 1380.83184 · doi:10.1007/JHEP05(2017)009
[52] W.-C. Gan and F.-W. Shu, Holographic complexity: A tool to probe the property of reduced fidelity susceptibility, Phys. Rev.D 96 (2017) 026008 [arXiv:1702.07471] [INSPIRE].
[53] D. Momeni, M. Faizal and R. Myrzakulov, Holographic Cavalieri Principle as a Universal relation between Holographic Complexity and Holographic Entanglement Entropy, arXiv:1703.01337 [INSPIRE]. · Zbl 1430.81068
[54] E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic Subregion Complexity for Singular Surfaces, Eur. Phys. J.C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE]. · doi:10.1140/epjc/s10052-017-5247-1
[55] P. Wang, H. Yang and S. Ying, Action growth in f (R) gravity, Phys. Rev.D 96 (2017) 046007 [arXiv:1703.10006] [INSPIRE].
[56] W.-D. Guo, S.-W. Wei, Y.-Y. Li and Y.-X. Liu, Complexity growth rates for AdS black holes in massive gravity and f (R) gravity, Eur. Phys. J.C 77 (2017) 904 [arXiv:1703.10468] [INSPIRE]. · doi:10.1140/epjc/s10052-017-5466-5
[57] M. Kord Zangeneh, Y.C. Ong and B. Wang, Entanglement Entropy and Complexity for One-Dimensional Holographic Superconductors, Phys. Lett.B 771 (2017) 235 [arXiv:1704.00557] [INSPIRE]. · Zbl 1372.81022 · doi:10.1016/j.physletb.2017.05.051
[58] S.-M. Ruan and R.-Q. Yang, Comments on Joint Terms in Gravitational Action, Class. Quant. Grav.34 (2017) 175017 [arXiv:1704.03232] [INSPIRE]. · Zbl 1372.83008 · doi:10.1088/1361-6382/aa8053
[59] R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev.D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].
[60] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[61] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP06 (2002) 043 [hep-th/0205236] [INSPIRE]. · Zbl 1035.81548 · doi:10.1088/1126-6708/2002/06/043
[62] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys.87 (1983) 577 [INSPIRE]. · doi:10.1007/BF01208266
[63] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[64] M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys.48 (2000) 125 [hep-th/9812032] [INSPIRE]. · Zbl 0976.81093 · doi:10.1002/(SICI)1521-3978(20001)48:1/3<125::AID-PROP125>3.0.CO;2-B
[65] A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP04 (2006) 015 [hep-th/0512125] [INSPIRE]. · doi:10.1088/1126-6708/2006/04/015
[66] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE]. · Zbl 1057.81550 · doi:10.4310/ATMP.1998.v2.n3.a3
[67] D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP05 (2007) 067 [hep-th/0701132] [INSPIRE]. · doi:10.1088/1126-6708/2007/05/067
[68] A. Karch and A. O’Bannon, Chiral transition of N = 4 super Yang-Mills with flavor on a 3-sphere, Phys. Rev.D 74 (2006) 085033 [hep-th/0605120] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.