×

The infinite extendibility problem for exchangeable real-valued random vectors. (English) Zbl 1459.60078

Summary: We survey known solutions to the infinite extendibility problem for (necessarily exchangeable) probability laws on \(\mathbb{R}^d \), which is:
Can a given random vector \(\boldsymbol{X}=(X_1,\ldots ,X_d)\) be represented in distribution as the first \(d\) members of an infinite exchangeable sequence of random variables?
This is the case if and only if \(\boldsymbol{X}\) has a stochastic representation that is “conditionally iid” according to the seminal de Finetti’s Theorem. Of particular interest are cases in which the original motivation behind the model \(\boldsymbol{X}\) is not one of conditional independence. After an introduction and some general theory, the survey covers the traditional cases when \(\boldsymbol{X}\) takes values in \(\{0,1\}^d\), has a spherical law, a law with \(\ell_1\)-norm symmetric survival function, or a law with \(\ell_{\infty}\)-norm symmetric density. The solutions in all these cases constitute analytical characterizations of mixtures of iid sequences drawn from popular, one-parametric probability laws on \(\mathbb{R}\), like the Bernoulli, the normal, the exponential, or the uniform distribution. The survey further covers the less traditional cases when \(\boldsymbol{X}\) has a Marshall-Olkin distribution, a multivariate wide-sense geometric distribution, a multivariate extreme-value distribution, or is defined as a certain exogenous shock model including the special case when its components are samples from a Dirichlet prior. The solutions in these cases correspond to iid sequences drawn from random distribution functions defined in terms of popular families of non-decreasing stochastic processes, like a Lévy subordinator, a random walk, a process that is strongly infinitely divisible with respect to time, or an additive process. The survey finishes with a list of potentially interesting open problems. In comparison to former literature on the topic, this survey purposely dispenses with generalizations to the related and larger concept of finite exchangeability or to more general state spaces than \(\mathbb{R}\). Instead, it aims to constitute an up-to-date comprehensive collection of known and compelling solutions of the real-valued extendibility problem, accessible for both applied and theoretical probabilists, presented in a lecture-like fashion.

MSC:

60G09 Exchangeability for stochastic processes
60E05 Probability distributions: general theory
62H99 Multivariate analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Aldous, D.J. (1985). Exchangeability and related topics. Springer, École d’Été de Probabilités de Saint-Flour XIII-1983, Lecture Notes in Mathematics 1117, 1-198.
[2] Aldous, D.J. (1985). More uses of exchangeability: representations of complex random structures. in Probability and Methematical Genetics – papers in honour of Sir John Kingman, Cambridge University Press 35-63. · Zbl 1213.60068
[3] Alfsen, E.M. (1971). Compact convex sets and boundary integrals. Springer, Berlin. · Zbl 0209.42601
[4] Arnold, B.C. (1975). A characterization of the exponential distribution by multivariate geometric compounding. Sankhy \(\bar{a} \): The Indian Journal of Statistics 37:1 164-173. · Zbl 0358.60025
[5] Assaf, D. and Langberg, N.A. and Savits, T.H. and Shaked, M. (1984). Multivariate phase-type distributions. Operations Research 32:3 688-702. · Zbl 0558.60070
[6] Barlow, R.E. and Proschan, F. (1975). Statistical theory of reliability and life testing. Rinehart and Winston, New York. · Zbl 0379.62080
[7] Beirlant, J. and Goegebeur, Y. and Teugels, J. and Segers, J. (2004). Statistics of extremes: theory and applications. John Wiley & Sons, Chichester. · Zbl 1070.62036
[8] Berg, C. and Christensen, J.P.R. and Ressel, P. (1984). Harmonic analysis on semigroups. Springer, Berlin. · Zbl 0619.43001
[9] Bernhart, G. and Mai, J.-F. and Scherer, M. (2015). On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions. Dependence Modeling 3 29-46. · Zbl 1323.60028
[10] Bernstein, S. (1929). Sur les fonctions absolument monotones. Acta Mathematica 52 1-66. · JFM 55.0142.07
[11] Bezgina, E. and Burkschat, M. (2019). On total positivity of exchangeable random variables obtained by symmetrization, with applications to failure-dependent lifetimes. Journal of Multivariate Analysis 169 95-109. · Zbl 1404.60029
[12] Billingsley, P. (1995). Probability and measure. Wiley Series in Probability and Statistics, Wiley, New York. · Zbl 0822.60002
[13] Brigo, D. and Mai, J.-F. and Scherer, M. (2016). Markov multi-variate survival indicators for default simulation as a new characterization of the Marshall-Olkin law Statistics and Probability Letters 114 60-66. · Zbl 1338.60044
[14] Capéraà, P. and Fougères, A.-L. and Genest, C. (2000). Bivariate distributions with given extreme value attractor. Journal of Multivariate Analysis 72 30-49. · Zbl 0978.62043
[15] Charpentier, A. and Fougères, A.-L. and Genest, C. and Nešlehová, J.G. (2014). Multivariate Archimax copulas. Journal of Multivariate Analysis 126 118-136. · Zbl 1349.62173
[16] Cossette, H. and Gadoury, S.-P. and Marceauand, E. and Mtalai, I. (2017). Hierarchical Archimedean copulas through multivariate compound distributions. Insurance: Mathematics and Economics 76 1-13. · Zbl 1395.62112
[17] Daboni, L. (1982). Exchangeability and completely monotone functions. In: Exchangeability in Probability and Statistics, edited by G. Koch and F. Spizzichino, North-Holland Publishing Company 39-45. · Zbl 0505.60005
[18] de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio. Atti della R. Academia Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematica e Naturale 4 251-299. · JFM 57.0610.01
[19] de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7 1-68. · Zbl 0017.07602
[20] Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. Annales de l’Institute Henri Poincaré 23 397-423. · Zbl 0619.60039
[21] Dickinson, P.J.C. and Gijben, L. (2014). On the computational complexity of membership problems for the completely positive cone and its dual. Computational Optimization and Applications 57:2 403-415. · Zbl 1330.90103
[22] Durante, F. and Quesada-Molina, J.J. and Úbeda-Flores, M. (2007). A method for constructing multivariate copulas. In: New Dimensions in Fuzzy Logic and Related Technologies - Proceedings of the 5th EUSFLAT Conference, volume 1, edited by M. Štepnicka et al. 191-195. · Zbl 1132.68761
[23] Durrett, R. (2010). Probability: theory and examples, 4th edition. Cambridge University Press, Cambridge. · Zbl 1202.60001
[24] Dykstra, R.L. and Hewett, J.E. and Thompson, Jr., W.A. (1973). Events which are almost independent. Annals of Statistics 1:4 674-681. · Zbl 0264.62004
[25] Embrechts, P. and Hofert, M. (2013). A note on generalized inverses. Mathematical Methods of Operations Research 77 423-432. · Zbl 1281.60014
[26] Esary, J.D. and Marshall, A.W. (1974). Multivariate distributions with exponential minimums. Annals of Statistics 2 84-98. · Zbl 0293.60017
[27] Es-Sebaiy, K. and Ouknine, Y. (2008). How rich is the class of processes which are infinitely divisible with respect to time. Statistics and Probability Letters 78 537-547. · Zbl 1216.60042
[28] Giesecke, K. (2003). A simple exponential model for dependent defaults. Journal of Fixed Income 13:3 74-83.
[29] Gupta, A.K. and Nadarajah, S. (2004). Handbook of beta distributions and its applications. Marcel Dekker, New York. · Zbl 1062.62021
[30] Hewitt, E. and Savage, l.J. (1955). Symmetric measures on Cartesian products. Transactions of the American Mathematical Society 80 470-501. · Zbl 0066.29604
[31] Fang, K.-T. and Kotz, S. and Ng, K.-W. (1990). Symmetric multivariate and related distributions. Chapman and Hall, London. · Zbl 0699.62048
[32] Feller, W. (1966). An introduction to probability theory and its applications, volume II, 2nd edition. John Wiley and Sons, Inc., Hoboken. · Zbl 0138.10207
[33] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics 1 209-230. · Zbl 0255.62037
[34] Ferguson, T.S. (1974). Prior distributions on spaces of probability measures. Annals of Statistics 2 615-629. · Zbl 0286.62008
[35] Frank, M.J. (1979). On the simultaneous associativity of \(F(x,y)\) and \(x+y-F(x,y)\). Aequationes Mathematicae 19 194-226. · Zbl 0444.39003
[36] Galambos, J. (1975). Order statistics of samples from multivariate distributions. Journal of the American Statistical Association 70 674-680. · Zbl 0315.62022
[37] Genest, C. and Nešlehová, J.G. (2017). When Gumbel met Galambos. In: Copulas and Dependence Models With Applications: Contributions in Honor of Roger B. Nelsen (M. Úbeda Flores, E. de Amo Artero, F. Durante, J. Fernández Sánchez, Eds.), Springer, 83-93.
[38] Genest, C. and Nešlehová, J.G. and Rivest, L.-P. (2018). The class of multivariate max-id copulas with \(\ell_1\)-norm symmetric exponent measure. Bernoulli 24 3751-3790. · Zbl 1415.62030
[39] Genest, C. and Rivest, L.-P. (1989). Characterization of Gumbel’s family of extreme value distributions. Statistics and Probability Letters 8 207-211. · Zbl 0701.62060
[40] Gnedin, A.V. (1995). On a class of exchangeable sequences. Statistics and Probability Letters 25 351-355. · Zbl 0838.60033
[41] Gumbel, E.J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association 55 698-707. · Zbl 0099.14501
[42] Gumbel, E.J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association 56 335-349. · Zbl 0099.14502
[43] Hakassou, A. and Ouknine, Y. (2013). IDT processes and associated Lévy processes with explicit constructions. Stochastics 85:6 1073-1111. · Zbl 1326.60065
[44] Hausdorff, F. (1921). Summationsmethoden und Momentfolgen I. Mathematische Zeitschrift 9:3-4 74-109. · JFM 48.2005.01
[45] Hausdorff, F. (1923). Momentenproblem für ein endliches Intervall. Mathematische Zeitschrift 16 220-248. · JFM 49.0193.01
[46] Herbertsson, A. and Rootzén, H. (2008). Pricing \(k\) th-to-default swaps under default contagion: the matrix-analytic approach. Journal of Computational Finance 12 49-72.
[47] Hering, C. and Hofert, M. and Mai, J.-F. and Scherer, M. (2010). Constructing hierarchical Archimedean copulas with Lévy subordinators. Journal of Multivariate Analysis 101 1428-1433. · Zbl 1194.60017
[48] Hjort, N.L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Annals of Statistics 18:3 1259-1294. · Zbl 0711.62033
[49] Hofert, M. and Scherer, M. (2011). CDO pricing with nested Archimedean copulas. Quantitative Finance 11 775-787. · Zbl 1213.91074
[50] H. Joe (1997). Multivariate models and dependence concepts. Chapman & Hall/CRC, Boca Raton. · Zbl 0990.62517
[51] Kalbfleisch, J.D. (1978). Non-parametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society Series B 40:2 214-221. · Zbl 0387.62030
[52] Kallenberg, O. (1982). A dynamical approach to exchangeability. In: Exchangeability in Probability and Statistics, edited by G. Koch and F. Spizzichino, North-Holland Publishing Company, 87-96.
[53] Karlin, S. and Shapley, L.S. (1953). Geometry of moment spaces. Memoirs of the American Mathematical Society 12:93. · Zbl 0052.18501
[54] Kimberling, C.H. (1974). A probabilistic interpretation of complete monotonicity. Aequationes Mathematicae 10 152-164. · Zbl 0309.60012
[55] Kingman, J.F.C. (1967). Completely random measures. Pacific Journal of Mathematics 21:1 59-78. · Zbl 0155.23503
[56] Kingman, J.F.C. (1972). On random sequences with spherical symmetry. Biometrika 59 492-494. · Zbl 0238.60025
[57] Kingman, J.F.C. (1978). Uses of exchangeability. Annals of Probability 6:2 183-197. · Zbl 0374.60064
[58] Konstantopoulos, T. and Yuan, L. (2019). On the extendibility of finitely exchangeable probability measures. Transactions of the American Mathematical Society 371 7067-7092. · Zbl 1478.60110
[59] Kopp, C. and Molchanov, I. (2018). Series representations of time-stable stochastic processes. Probability and Mathematical Statistics 38:2 299-315. · Zbl 1411.60073
[60] Liggett, T.M. and Steiff, J.E. and Tóth, B. (2007). Statistical mechanical systems on complete graphs, infinite exchangeability, finite extensions and a discrete finite moment problem. Annals of Probability 35:3 867-914. · Zbl 1126.44007
[61] Lijoi, A. and Prünster, I. and Walker, S.G. (2008). Posterior analysis for some classes of nonparametric models. Journal of Nonparametric Statistics 20:5 447-457. · Zbl 1359.62107
[62] Lindskog, F. and McNeil, A.J. (2003). Common Poisson shock models: applications to insurance and credit risk modelling. ASTIN Bulletin 33:2 209-238. · Zbl 1087.91030
[63] Lukacs, E. (1955). A characterization of the gamma distribution. Annals of Mathematical Statistics 26 319-324. · Zbl 0065.11103
[64] Mai, J.-F. (2018). Extreme-value copulas associated with the expected scaled maximum of independent random variables. Journal of Multivariate Analysis 166 50-61. · Zbl 1398.62130
[65] Mai, J.-F. (2019). Simulation of hierarchical Archimedean copulas beyond the completely monotone case. Dependence Modeling 7 202-214. · Zbl 1448.62065
[66] Mai, J.-F. (2020). Canonical spectral representation for exchangeable max-stable sequences. Extremes 23 151-169. · Zbl 1457.60053
[67] Mai, J.-F. (2020). The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay. Dependence Modeling 8 210-220.
[68] Mai, J.-F. and Schenk, S. and Scherer, M. (2016). Exchangeable exogenous shock models. Bernoulli 22 1278-1299. · Zbl 1388.62153
[69] Mai, J.-F. and Schenk, S. and Scherer, M. (2016). Analyzing model robustness via a distortion of the stochastic root: a Dirichlet prior approach. Statistics and Risk Modeling 32 177-195. · Zbl 1347.60143
[70] Mai, J.-F. and Schenk, S. and Scherer, M. (2017). Two novel characterizations of self-decomposability on the positive half-axis. Journal of Theoretical Probability 30 365-383. · Zbl 1405.60049
[71] Mai, J.-F. and Scherer, M. (2009). Lévy-frailty copulas. Journal of Multivariate Analysis 100 1567-1585. · Zbl 1162.62048
[72] Mai, J.-F. and Scherer, M. (2011). Reparameterizing Marshall-Olkin copulas with applications to sampling. Journal of Statistical Computation and Simulation 81 59-78. · Zbl 1206.62101
[73] Mai, J.-F. and Scherer, M. (2012). H-extendible copulas. Journal of Multivariate Analysis 110 151-160. · Zbl 1301.62050
[74] Mai, J.-F. and Scherer, M. (2014). Characterization of extendible distributions with exponential minima via processes that are infinitely divisible with respect to time. Extremes 17 77-95. · Zbl 1310.62072
[75] Mai, J.-F. and Scherer, M. (2017). Simulating copulas, 2nd edition. World Scientific Publishing, Singapore.
[76] Mai, J.-F. and Scherer, M. (2019). Subordinators which are infinitely divisible w.r.t. time: construction, properties, and simulation of max-stable sequences and infinitely divisible laws. ALEA: Latin American Journal of Probability and Mathematical Statistics 16:2 977-1005. · Zbl 1488.60123
[77] Mai, J.-F. and Scherer, M. and Shenkman, N. (2013). Multivariate geometric laws, (logarithmically) monotone sequences, and infinitely divisible laws. Journal of Multivariate Analysis 115 457-480. · Zbl 1259.62040
[78] Mansuy, R. (2005). On processes which are infinitely divisible with respect to time. Working paper, arXiv:math/0504408 .
[79] Marshall, A.W. and Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association 62 30-44. · Zbl 0147.38106
[80] Marshall, A.W. and Olkin, I. (1979). Inequalities: theory of majorization and its applications. Academic Press, New York. · Zbl 0437.26007
[81] McNeil, A.J. and Frey, R. and Embrechts, P. (2005). Quantitative risk management. Princeton University Press, Princeton. · Zbl 1089.91037
[82] McNeil, A.J. (2008). Sampling nested Archimedean copulas. Journal of Statistical Computation and Simulation 78 567-581. · Zbl 1221.00061
[83] McNeil, A.J. and Nešlehová, J. (2009). Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_1\)-norm symmetric distributions. Annals of Statistics 37:5B 3059-3097. · Zbl 1173.62044
[84] McNeil, A.J. and Nešlehová, J. (2010). From Archimedean to Liouville copulas. Journal of Multivariate Analysis 101 1772-1790. · Zbl 1190.62102
[85] Molchanov, I. (2008). Convex geometry of max-stable distributions. Extremes 11:3 235-259. · Zbl 1164.60003
[86] Müller, A. and Stoyan, D. (2002). Comparison methods for stochastic models and risks. John Wiley and Sons, Chichester (2002). · Zbl 0999.60002
[87] Papangelou, F. (1989). On the Gaussian fluctuations of the critical Curie-Weiss model in statistical mechanics. Probability Theory and Related Fields 83 265-278. · Zbl 0684.60080
[88] Pestman, W.R. (2009). Mathematical statistics, 2nd edition. De Gruyter, Berlin. · Zbl 1251.62001
[89] Puccetti, G. and Wang, R. (2015). Extremal dependence concepts. Statistical Science 30:4 485-517. · Zbl 1426.62156
[90] Rachev, S.T. and Rüschendorf, L. (1991). Approximate independence of distributions on spheres and their stability properties. Annals of Probability 19 1311-1337. · Zbl 0732.62014
[91] Resnick, S.I. (1987). Extreme values, regular variation and point processes. Springer-Verlag, Berlin. · Zbl 0633.60001
[92] Ressel, P. (1985). de Finetti type theorems: an analytical approach. Annals of Probability 13 898-922. · Zbl 0579.60012
[93] Ryll-Nardzewski, C. (1957). On stationary sequences of random variables and the de Finetti equivalence. Colloquium Mathematicum 4 149-156. · Zbl 0077.12302
[94] Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge. · Zbl 0973.60001
[95] Scarsini, M. (1985). Lower bounds for the distribution function of a \(k\)-dimensional \(n\)-extendible exchangeable process. Statistics and Probability Letters 3 57-62. · Zbl 0564.60001
[96] Schilling, R. and Song, R. and Vondracek, Z. (2010). Bernstein functions. De Gruyter, Berlin. · Zbl 1197.33002
[97] Schoenberg, I.J. (1938). Metric spaces and positive definite functions. Transactions of the American Mathematical Society 44 522-536. · JFM 64.0617.02
[98] Shaked, M. (1977). A concept of positive dependence for exchangeable random variables. Annals of Statistics 5 505-515. · Zbl 0363.62036
[99] Shaked, M. and Spizzichino, F. and Suter, F. (2002). Nonhomogeneous birth processes and \(\ell_{\infty }\)-spherical densities, with applications in reliability theory. Probability in the Engineering and Informational Sciences 16 271-288. · Zbl 1020.60078
[100] Sibley, D.A. (1971). A metric for weak convergence of distribution functions. Rocky Mountain Journal of Mathematics 1:3 427-430. · Zbl 0245.60007
[101] Sklar, A. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229-231. · Zbl 0100.14202
[102] Sloot, H. (2020). The deFinetti representation of generalised Marshall-Olkin sequences. Dependence Modeling 8:1 107-118.
[103] Spizzichino, F. (1982). Extendibility of symmetric probability distributions and related bounds. In: Exchangeability in Probability and Statistics, edited by G. Koch and F. Spizzichino, North-Holland Publishing Company, 313-320. · Zbl 0495.62018
[104] Steutel, F.W. and van Harn, K. (2003). Infinite divisibility of probability distributions on the real line. CRC Press, Boca Raton. · Zbl 1063.60001
[105] Taleb, N.N. (2020). Statistical consequences of fat tails. STEM Academic Press.
[106] Williamson, R.E. (1956). Multiply monotone functions and their Laplace transforms. Duke Mathematical Journal 23 189-207. · Zbl 0070.28501
[107] Zhu, W.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.