×

Infinite networks and variation of conductance functions in discrete Laplacians. (English) Zbl 1328.35257

Summary: For a given infinite connected graph \(G = (V, E)\) and an arbitrary but fixed conductance function \(c\), we study an associated graph Laplacian \(\Delta_{c}\); it is a generalized difference operator where the differences are measured across the edges \(E\) in \(G\); and the conductance function \(c\) represents the corresponding coefficients. The graph Laplacian (a key tool in the study of infinite networks) acts in an energy Hilbert space \(\mathcal{H}_{E}\) computed from \(c\). Using a certain Parseval frame, we study the spectral theoretic properties of graph Laplacians. In fact, for fixed c, there are two versions of the graph Laplacian, one defined naturally in the \(l^{2}\) space of \(V\) and the other in \(\mathcal{H}_{E}\). The first is automatically selfadjoint, but the second involves a Krein extension. We prove that, as sets, the two spectra are the same, aside from the point 0. The point zero may be in the spectrum of the second, but not the first. We further study the fine structure of the respective spectra as the conductance function varies, showing now how the spectrum changes subject to variations in the function \(c\). Specifically, we study an order on the spectra of the family of operators \(\Delta_{c}\), and we compare it to the ordering of pairs of conductance functions. We show how point-wise estimates for two conductance functions translate into spectral comparisons for the two corresponding graph Laplacians, involving a certain similarity: We prove that point-wise ordering of two conductance functions \(c\) on \(E\) induces a certain similarity of the corresponding (Krein extensions computed from the) two graph Laplacians \(\Delta_{c}\). The spectra are typically continuous, and precise notions of fine-structure of spectrum must be defined in terms of equivalence classes of positive Borel measures (on the real line). Our detailed comparison of spectra is analyzed this way.{
©2015 American Institute of Physics}

MSC:

35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
39A70 Difference operators
35P05 General topics in linear spectral theory for PDEs
47B25 Linear symmetric and selfadjoint operators (unbounded)
78A55 Technical applications of optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Akhiezer, N. I.; Glazman, I. M., Theory of Linear Operators in Hilbert Space (1993) · Zbl 0874.47001
[2] Anandam, V., Harmonic Functions and Potentials on Finite or Infinite Networks, 12 (2011) · Zbl 1239.31001
[3] Arov, D. Z.; Dym, H., On three Krein extension problems and some generalizations, Integr. Equations Oper. Theory, 31, 1, 1-91 (1998) · Zbl 0909.30030
[4] Barlow, M. T., Random walks, Electrical Resistance, and Nested Fractals, 283, 131-157 (1993) · Zbl 0791.60097
[5] Barrière, L.; Comellas, F.; Dalfó, C., Fractality and the small-world effect in Sierpinski graphs, J. Phys. A, 39, 38, 11739-11753 (2006) · Zbl 1113.28007
[6] Burioni, R.; Cassi, D., Random walks on graphs: Ideas, techniques and results, J. Phys. A, 38, 8, R45-R78 (2005) · Zbl 1076.82023
[7] Croydon, D. A.; Hambly, B. M., Local limit theorems for sequences of simple random walks on graphs, Potential Anal., 29, 4, 351-389 (2008) · Zbl 1185.60087
[8] Currey, B.; Mayeli, A., The orthonormal dilation property for abstract Parseval wavelet frames, Can. Math. Bull., 56, 4, 729-736 (2013) · Zbl 1287.43002
[9] Dunford, N.; Schwartz, J. T., Linear Operators. Part II (1988)
[10] Ehler, M.; Okoudjou, K. A., Probabilistic Frames: An Overview, 415-436 (2013) · Zbl 1262.42013
[11] Gander, M. J.; Loisel, S.; Szyld, D. B., An optimal block iterative method and preconditioner for banded matrices with applications to PDEs on irregular domains, SIAM J. Matrix Anal. Appl., 33, 2, 653-680 (2012) · Zbl 1252.65068
[12] Grimmett, G., Probability on graphs · Zbl 0879.60107
[13] Hartman, P., Perturbation of spectra and Krein extensions, Rend. Circ. Mat. Palermo (2), 5, 341-354 (1957) · Zbl 0083.11302
[14] Han, D.; Jing, W.; Larson, D.; Li, P.; Mohapatra, R. N., Dilation of dual frame pairs in Hilbert \(C^∗\)-modules, Results Math., 63, 1-2, 241-250 (2013) · Zbl 1270.46050
[15] Hassi, S.; Malamud, M.; de Snoo, H., On Kreĭn’s extension theory of nonnegative operators, Math. Nachr., 274/275, 40-73 (2004) · Zbl 1076.47008
[16] Jorgensen, P. E. T., Essential self-adjointness of the graph-Laplacian, J. Math. Phys., 49, 7, 073510 (2008) · Zbl 1152.81496
[17] Jorgensen, P. E. T.; Pearse, E. P. J., A Hilbert space approach to effective resistance metric, Complex Anal. Oper. Theory, 4, 4, 975-1013 (2010) · Zbl 1209.05144
[18] Jorgensen, P. E. T.; Pearse, E. P. J., Resistance Boundaries of Infinite Networks, 64, 111-142 (2011) · Zbl 1223.05175
[19] Jorgensen, P. E. T.; Pearse, E. P. J., Spectral reciprocity and matrix representations of unbounded operators, J. Funct. Anal., 261, 3, 749-776 (2011) · Zbl 1257.47025
[20] Jorgensen, P.; Tian, F., Frames and factorization of graph laplacians, Opuscula Math., 35, 3, 293-332 (2015) · Zbl 1359.47055
[21] Kaftal, V.; Larson, D. R.; Zhang, S., Operator-valued frames, Trans. Amer. Math. Soc., 361, 12, 6349-6385 (2009) · Zbl 1185.42032
[22] Keller, M.; Lenz, D., Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math., 666, 189-223 (2012) · Zbl 1252.47090
[23] Konno, N.; Masuda, N.; Roy, R.; Sarkar, A., Rigorous results on the threshold network model, J. Phys. A, 38, 28, 6277-6291 (2005) · Zbl 1078.90015
[24] Kutyniok, G.; Okoudjou, K. A.; Philipp, F.; Tuley, E. K., Scalable frames, Linear Algebra Appl., 438, 5, 2225-2238 (2013) · Zbl 1260.42023
[25] Reed, M.; Simon, B., Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness, 2 (1975) · Zbl 0308.47002
[26] Rodgers, G. J.; Austin, K.; Kahng, B.; Kim, D., Eigenvalue spectra of complex networks, J. Phys. A, 38, 43, 9431-9437 (2005) · Zbl 1087.05053
[27] Shah, F. A.; Debnath, L., Tight Wavelet Frames on Local Fields, 33, 293-307 (2013) · Zbl 1277.42047
[28] Tetali, P., Random walks and the effective resistance of networks, J. Theor. Probab., 4, 1, 101-109 (1991) · Zbl 0722.60070
[29] Texier, C.; Degiovanni, P., Charge and current distribution in graphs, J. Phys. A, 36, 50, 12425-12452 (2003) · Zbl 1255.81250
[30] Vogt, H.; Zippelius, A., Invariant recognition in Potts glass neural networks, J. Phys. A, 25, 8, 2209-2226 (1992) · Zbl 0753.92005
[31] Wojciechowski, R. K., Stochastic completeness of graphs
[32] Zemanian, A. H., Random walks on finitely structured transfinite networks, Potential Anal., 5, 4, 357-382 (1996) · Zbl 0848.94023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.