×

Nonlinear mixed-effects scalar-on-function models and variable selection. (English) Zbl 1436.62132

Summary: This paper is motivated by our collaborative research and the aim is to model clinical assessments of upper limb function after stroke using 3D-position and 4D-orientation movement data. We present a new nonlinear mixed-effects scalar-on-function regression model with a Gaussian process prior focusing on the variable selection from a large number of candidates including both scalar and function variables. A novel variable selection algorithm has been developed, namely functional least angle regression. As it is essential for this algorithm, we studied the representation of functional variables with different methods and the correlation between a scalar and a group of mixed scalar and functional variables. We also propose a new stopping rule for practical use. This algorithm is efficient and accurate for both variable selection and parameter estimation even when the number of functional variables is very large and the variables are correlated. And thus the prediction provided by the algorithm is accurate. Our comprehensive simulation study showed that the method is superior to other existing variable selection methods. When the algorithm was applied to the analysis of the movement data, the use of the nonlinear random-effect model and the function variables significantly improved the prediction accuracy for the clinical assessment.

MSC:

62G08 Nonparametric regression and quantile regression
62J05 Linear regression; mixed models
60G15 Gaussian processes
62H20 Measures of association (correlation, canonical correlation, etc.)
62R10 Functional data analysis

Software:

fda (R)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barreca, Sr; Stratford, Pw; Lambert, Cl; Masters, Lm; Streiner, Dl, Test-retest reliability, validity, and sensitivity of the chedoke arm and hand activity inventory: a new measure of upper-limb function for survivors of stroke, Arch. Phys. Med. Rehabil., 86, 1616-1622 (2005) · doi:10.1016/j.apmr.2005.03.017
[2] Cao, C.; Shi, Jq; Lee, Y., Robust functional regression model for marginal mean and subject-specific inferences, Stat. Methods Med. Res., 27, 11, 3236-3254 (2018) · doi:10.1177/0962280217695346
[3] Cheng, Y.: Functional regression analysis and variable selection for motion data. Ph.D. thesis Newcastle University, UK (2016)
[4] Collazos, Ja; Dias, R.; Zambom, Az, Consistent variable selection for functional regression models, J. Multivar. Anal., 146, 63-71 (2016) · Zbl 1334.62056 · doi:10.1016/j.jmva.2015.06.007
[5] Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R., Least angle regression, Ann. Stat., 32, 407-499 (2003) · Zbl 1091.62054
[6] Fan, Y.; James, Gm; Radchenko, P., Functional additive regression, Ann. Stat., 43, 5, 2296-2325 (2015) · Zbl 1327.62252 · doi:10.1214/15-AOS1346
[7] Gertheiss, J.; Maity, A.; Staicu, Am, Variable selection in generalized functional linear models, Stat, 2, 86-101 (2013) · doi:10.1002/sta4.20
[8] Gertheiss, J.; Goldsmith, J.; Crainiceanu, C.; Greven, S., Longitudinal scalar-on-functions regression with application to tractography data, Biostatistics, 14, 3, 447-461 (2013) · doi:10.1093/biostatistics/kxs051
[9] Goldsmith, J.; Crainiceanu, Cm; Caffo, B.; Reich, D., Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements, J. R. Stat. Soc. Ser. C Appl. Stat., 61, 3, 453-469 (2012) · doi:10.1111/j.1467-9876.2011.01031.x
[10] Goldsmith, J.; Huang, L.; Crainiceanu, Cm, Smooth scalar-on-image regression via spatial Bayesian variable selection, J. Comput. Graph. Stat., 23, 46-64 (2014) · doi:10.1080/10618600.2012.743437
[11] Gramacy, Rb; Lian, H., Gaussian process single-index models as emulators for computer experiments, Technometrics, 54, 30-41 (2012) · doi:10.1080/00401706.2012.650527
[12] He, G.; Müller, Hg; Wang, Jl; Yang, W., Functional linear regression via canonical analysis, Bernoulli, 16, 705-729 (2010) · Zbl 1220.62076 · doi:10.3150/09-BEJ228
[13] Langhorne, P.; Coupar, F.; Pollock, A., Motor recovery after stroke: a systematic review, Lancet Neurol., 8, 741-754 (2009) · doi:10.1016/S1474-4422(09)70150-4
[14] Leurgans, Se; Moyeed, Ra; Silverman, Bw, Canonical correlation analysis when the data are curves, J. R. Stat. Soc. Ser. B, 55, 725-740 (1993) · Zbl 0803.62049
[15] Matsui, H.; Konishi, S., Variable selection for functional regression models via the \(\ell 1\) regularization, Comput. Stat. Data Anal., 55, 3304-3310 (2011) · Zbl 1271.62140 · doi:10.1016/j.csda.2011.06.016
[16] Morris, Js; Carroll, Rj, Wavelet-based functional mixed models, J. R. Stat. Soc. Ser. B, 68, 179-199 (2006) · Zbl 1110.62053 · doi:10.1111/j.1467-9868.2006.00539.x
[17] Müller, Hg; Yao, F., Functional additive models, J. Am. Stat. Assoc., 103, 484, 1534-1544 (2012) · Zbl 1286.62040 · doi:10.1198/016214508000000751
[18] Park, My; Hastie, T., L1-regularization path algorithm for generalized linear models, J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 659-677 (2007) · Zbl 07555370 · doi:10.1111/j.1467-9868.2007.00607.x
[19] Ramsay, Jo; Silverman, Bw, Functional Data Analysis (2006), Hoboken: Wiley Online Library. Wiley, Hoboken
[20] Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press. ISBN 0-262-18253-X (2006) · Zbl 1177.68165
[21] Reiss, Pt; Ogden, Rt, Functional principal component regression and functional partial least squares, J. Am. Stat. Assoc., 102, 984-996 (2007) · Zbl 1469.62237 · doi:10.1198/016214507000000527
[22] Scheipl, F.; Staicu, Am; Greven, S., Functional additive mixed models, J. Comput. Graph. Stat., 24, 477-501 (2015) · doi:10.1080/10618600.2014.901914
[23] Serradilla, J.; Shi, J.; Cheng, Y.; Morgan, G.; Lambden, C.; Eyre, J., Automatic assessment of upper limb function during play of the action video game, circus challenge: validity and sensitivity to change, SeGAH, 2014, 1-7 (2014)
[24] Shi, J. Q.; Cheng, Y.; Serradilla, J.; Morgan, G.; Lambden, C.; Ford, G. A.; Price, C.; Rodgers, H.; Cassidy, T.; Rochester, L.; Eyre, J. A., Evaluating Functional Ability of Upper Limbs after Stroke Using Video Game Data, Lecture Notes in Computer Science, 181-192 (2013), Cham: Springer International Publishing, Cham
[25] Shi, J.; Wang, B., Curve prediction and clustering with mixtures of Gaussian process functional regression models, Stat. Comput., 18, 267-283 (2008) · doi:10.1007/s11222-008-9055-1
[26] Shi, J.; Wang, B.; Will, E.; West, R., Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction, Stat. Med., 31, 3165-3177 (2012) · doi:10.1002/sim.4502
[27] Shi, Jq; Choi, T., Gaussian Process Regression Analysis for Functional Data (2011), Boca Raton: CRC Press, Boca Raton · Zbl 1273.60005
[28] Simon, N.; Tibshirani, R., Standardization and the group lasso penalty, Stat. Sin., 22, 983-1001 (2012) · Zbl 1257.62080 · doi:10.5705/ss.2011.075
[29] Wang, B.; Shi, Jq, Generalized Gaussian process regression model for non-Gaussian functional data, J. Am. Stat. Assoc., 109, 1123-1133 (2014) · Zbl 1368.62101 · doi:10.1080/01621459.2014.889021
[30] Yuan, M.; Lin, Y., Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B, 68, 49-67 (2006) · Zbl 1141.62030 · doi:10.1111/j.1467-9868.2005.00532.x
[31] Zhu, H.; Brown, Pj; Morris, Js, Robust, adaptive functional regression in functional mixed model framework, J. Am. Stat. Assoc., 106, 1167-1179 (2012) · Zbl 1229.62053 · doi:10.1198/jasa.2011.tm10370
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.