×

Bifurcation and dynamics in a mathematical model of early atherosclerosis. How acute inflammation drives lesion development. (English) Zbl 1350.92024

Summary: We present here a mathematical model describing the primary mechanisms that drive the early stages of atherosclerosis. This involves the interactions between modified low density lipoprotein (LDL), monocytes/macrophages, cytokines and foam cells. This model suggests that there is an initial inflammatory phase associated with atherosclerotic lesion development and a longer, quasi-static process of plaque development inside the arterial wall that follows the initial transient. We will show results that show how different LDL concentrations in the blood stream and different immune responses can affect the development of a plaque. Through numerical bifurcation analysis, we show the existence of a fold bifurcation when the flux of LDL from the blood is sufficiently high. By analysing the model presented in this paper, we gain a greater insight into this inflammatory response qualitatively and quantitatively.

MSC:

92C50 Medical applications (general)
92C40 Biochemistry, molecular biology
92C42 Systems biology, networks

Software:

AUTO-07P; AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersson J, Libby P, Hansson G (2010) Adaptive immunity and atherosclerosis. Clin Immunol 134(1, SI):33-46 · doi:10.1016/j.clim.2009.07.002
[2] Berg A, Scherer P (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96(9):939-949 · doi:10.1161/01.RES.0000163635.62927.34
[3] Bulelzai M, Dubbeldam J (2012) Long time evolution of atherosclerotic plaques. J Theor Biol 297:1-10 · Zbl 1336.92036 · doi:10.1016/j.jtbi.2011.11.023
[4] Bulelzai M, Dubbeldam J, Meijer H (2014) Bifurcation analysis of a model for atherosclerotic plaque evolution. Phys D-Nonlinear Phenom 278:31-43 · Zbl 1349.92072 · doi:10.1016/j.physd.2014.04.005
[5] Calvez V, Ebde A, Meunier N, Raoult A (2009) Mathematical modelling of the atherosclerotic plaque formation. ESAIM Proc 28:1-12 · Zbl 1176.76145 · doi:10.1051/proc/2009036
[6] Calvez V, Houot J, Meunier N, Raoult A, Rusnakova G (2010) Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc 30:1-14 · Zbl 1203.92035 · doi:10.1051/proc/2010002
[7] Channon K (2002) The endothelium and the pathogenesis of atherosclerosis. Medicine 30(4):54-58 · doi:10.1383/medc.30.4.54.28290
[8] Charo I, Taubman M (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95(9):858-866 · doi:10.1161/01.RES.0000146672.10582.17
[9] Cilla M, Pena E, Martinez M (2014) Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Int 11(90):20130866 · doi:10.1098/rsif.2013.0866
[10] Cobbold C, Sherratt J, Maxwell S (2002) Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull Math Biol 64(1):65-95 · Zbl 1334.92131 · doi:10.1006/bulm.2001.0267
[11] Cohen A, Myerscough M, Thompson R (2014) Athero-protective effects of high density lipoproteins (HDL): an ODE model of the early stages of atherosclerosis. Bull Math Biol 76(5):1117-1142 · Zbl 1297.92041 · doi:10.1007/s11538-014-9948-4
[12] Dabagh M, Jalali P, Tarbell J (2009) The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. Am J Physiol-Heart Circ Physiol 297(3):H983-H996 · doi:10.1152/ajpheart.00324.2009
[13] Di Vito L, Porto I, Burzotta F, Trani C, Pirozzolo G, Niccoli G, Leone AM, Crea F (2013) Radial artery intima-media ratio predicts presence of coronary thin-cap fibroatheroma: A frequency domain-optical coherence tomography study. Int J Cardiol 168(3):1917-1922 · doi:10.1016/j.ijcard.2012.12.082
[14] Doedel E, Champneys A, Fairgrieve T, Kuznetsov Y, Oldeman B, Paffenroth R, Sandstede B, Wang X, Zhang C (2007) AUTO-07P: continuation and bifurcation software for ordinary differential equations. http://cmvl.cs.concordia.ca/. Accessed Oct 2012
[15] Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins C, Iwamoto Y, Thompson B, Carlson A, Heidt T, Majmudar M, Lasitschka F, Etzrodt M, Waterman P, Waring M, Chicoine A, van der Laan A, Niessen H, Piek J, Rubin B, Butany J, Stone J, Katus H, Murphy S, Morrow D, Sabatine M, Vinegoni C, Moskowitz M, Pittet M, Libby P, Lin C, Swirski F, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487(7407):325-329 · doi:10.1038/nature11260
[16] El Khatib N, Genieys S, Volpert V (2007) Atherosclerosis initiation modeled as an inflammatory process. Math Model Nat Phenom 2(2):126-141 · Zbl 1337.92108 · doi:10.1051/mmnp:2008022
[17] El Khatib N, Genieys S, Kazmierczak B, Volpert V (2009) Mathematical modelling of atherosclerosis as an inflammatory disease. Philos Trans R Soc A-Math Phys Eng Sci 367(1908):4877-4886 · Zbl 1192.35097 · doi:10.1098/rsta.2009.0142
[18] El Khatib N, Genieys S, Kazmierczak B, Volpert V (2012) Reaction-diffusion model of atherosclerosis development. J Math Biol 65(2):349-374 · Zbl 1252.35156 · doi:10.1007/s00285-011-0461-1
[19] Filipovic N, Rosic M, Tanaskovic I, Milosevic Z, Nikolic D, Zdravkovic N, Peulic A, Kojic M, Fotiadis D, Parodi O (2012) ARTreat project: three-dimensional numerical simulation of plaque formation and development in the arteries. IEEE Trans Inf Technol Biomed 16(2, SI):272-278 · doi:10.1109/TITB.2011.2168418
[20] Filipovic N, Nikolic D, Saveljic I, Milosevic Z, Exarchos T, Pelosi G, Parodi O (2013) Computer simulation of three-dimensional plaque formation and progression in the coronary artery. Comput Fluids 88:826-833 · doi:10.1016/j.compfluid.2013.07.006
[21] Fok P (2012) Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem. J Theor Biol 314:23-33 · Zbl 1397.92325 · doi:10.1016/j.jtbi.2012.07.029
[22] Furchgott R (1999) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 19(4):235-251 · doi:10.1023/A:1020537506008
[23] Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27(11):2292-2301 · doi:10.1161/ATVBAHA.107.149179
[24] Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Ann Rev Immunol 27:165-197 · doi:10.1146/annurev.immunol.021908.132620
[25] Gessaghi V, Raschi M, Tanoni D, Perazzo C, Larreteguy A (2011) Growth model for cholesterol accumulation in the wall of a simplified 3D geometry of the carotid bifurcation. Comput Methods Appl Mech Eng 200(23-24):2117-2125 · Zbl 1228.76204 · doi:10.1016/j.cma.2011.03.001
[26] Han K, Hong K, Park J, Ko J, Kang D, Choi K, Hong M, Park S, Park S (2004) C-reactive protein promotes monocyte chemoattractant protein-1-mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 109(21):2566-2571 · doi:10.1161/01.CIR.0000131160.94926.6E
[27] Hansson G, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508-519 · doi:10.1038/nri1882
[28] Hidalgo A, Tello L, Toro E (2014) Numerical and analytical study of an atherosclerosis inflammatory disease model. J Math Biol 68(7):1785-1814 · Zbl 1293.35343 · doi:10.1007/s00285-013-0688-0
[29] Ibragimov A, McNeal C, Ritter L, Walton J (2005) A mathematical model of atherogenesis as an inflammatory response. Math Med Biol-A J IMA 22(4):305-333 · Zbl 1080.92040 · doi:10.1093/imammb/dqi011
[30] Kharbanda R, MacAllister R (2005) The atherosclerosis time-line and the role of the endothelium. Curr Med Chem Immunol Endocr Metab Agents 5(1):47-52 · doi:10.2174/1568013053005409
[31] Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868-874 · doi:10.1038/nature01323
[32] Libby P, Ridker P (2006) Inflammation and atherothrombosis-from population biology and bench research to clinical practice. J Am Coll Cardiol 48(9, Suppl. A):A33-A46 · doi:10.1016/j.jacc.2006.08.011
[33] Little M, Gola A, Tzoulaki I (2009) A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLOS Comput Biol 5(10):e1000539 · doi:10.1371/journal.pcbi.1000539
[34] Llodra J, Angeli V, Liu J, Trogan E, Fisher E, Randolph G (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci USA 101(32):11,779-11,784 · doi:10.1073/pnas.0403259101
[35] Lusis A (2000) Atherosclerosis. Nature 407(6801):233-241 · doi:10.1038/35025203
[36] McKay C, McKee S, Mottram N, Mulholland T, Wilson S, Kennedy S, Wadsworth R (2004) Towards a model of atherosclerosis. In: Tech. rep. University of Strathclyde
[37] McKellar G, McCarey D, Sattar N, McInnes I (2009) Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 6(6):410-417 · doi:10.1038/nrcardio.2009.57
[38] Milonas C, Jernberg T, Lindback J, Agewall S, Wallentin L, Stenestrand U (2010) Effect of angiotensin-converting enzyme inhibition on 1 year mortality and frequency of repeat acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 105(9):1229-1234 · doi:10.1016/j.amjcard.2009.12.032
[39] Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro L (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide-Biol Chem 15(4):265-279 · doi:10.1016/j.niox.2006.03.011
[40] Newby A (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108-2114 · doi:10.1161/ATVBAHA.108.173898
[41] Newby A, Zaltsman A (1999) Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41(2):345-360 · doi:10.1016/S0008-6363(98)00286-7
[42] Nozawa N, Hibi K, Endo M, Sugano T, Ebina T, Kosuge M, Tsukahara K, Okuda J, Umemura S, Kimura K (2010) Association between circulating monocytes and coronary plaque progression in patients with acute myocardial infarction. Circ J 74(7):1384-1391 · doi:10.1253/circj.CJ-09-0779
[43] Ougrinovskaia A, Thompson R, Myerscough M (2010) An Ode model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull Math Biol 72(6):1534-1561 · Zbl 1198.92026 · doi:10.1007/s11538-010-9509-4
[44] Paavola C, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L, Wong B, Jarnagin K, Handel T (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273(50):33,157-33,165 · doi:10.1074/jbc.273.50.33157
[45] Pai J, Pischon T, Ma J, Manson J, Hankinson S, Joshipura K, Curhan G, Rifai N, Cannuscio C, Stampfer M, Rimm E (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351(25):2599-2610 · doi:10.1056/NEJMoa040967
[46] Pappalardo F, Musumeci S, Motta S (2008) Modeling immune system control of atherogenesis. Bioinformatics 24(15):1715-1721 · doi:10.1093/bioinformatics/btn306
[47] Parodi O, Exarchos T, Marraccini P, Vozzi F, Milosevic Z, Nikolic D, Sakellarios A, Siogkas P, Fotiadis D, Filipovic N (2012) Patient-specific prediction of coronary plaque growth from CTA angiography: a multiscale model for plaque formation and progression. IEEE Trans Inf Technol Biomed 16(5, SI):952-965 · doi:10.1109/TITB.2012.2201732
[48] Plank M, Wall D, David T (2007) The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Math Biosci 207(1):26-39 · Zbl 1114.92024 · doi:10.1016/j.mbs.2006.08.017
[49] Poston R, Poston D (2007) Typical atherosclerotic plaque morphology produced in silico by an atherogenesis model based on self-perpetuating propagating macrophage recruitment. Math Model Nat Phenom 2(2):142-149 · Zbl 1337.92116 · doi:10.1051/mmnp:2008030
[50] Prior JA, Jordan KP, Kadam UT (2014) Associations between cardiovascular disease severity, osteoarthritis co-morbidity and physical health: a population-based study. Rheumatology 53(10):1794-1802
[51] Ross R (1999) Mechanisms of disease—atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115-126 · doi:10.1056/NEJM199901143400207
[52] Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10(1):36-46
[53] Volpert V, Petrovskii S (2009) Reaction-diffusion waves in biology. Phys Life Rev 6(4):267-310 · doi:10.1016/j.plrev.2009.10.002
[54] Zohdi T, Holzapfel G, Berger S (2004) A phenomenological model for atherosclerotic plaque growth and rupture. J Theor Biol 227(3):437-443 · Zbl 1439.92072 · doi:10.1016/j.jtbi.2003.11.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.