×

The zero-truncated Poisson-weighted exponential distribution with applications. (English) Zbl 1483.60018

Summary: In this article, a new distribution family for non-zero count data is proposed. It is developed from the Poisson-weighted exponential distribution. Various theoretical properties of the proposed distribution, such as the probability generating function, moment generating function, characteristic function, and moments are discussed. The method of maximum likelihood is used to estimate the parameters. Finally, some real data sets are applied to show the performance of the proposed distribution.

MSC:

60E05 Probability distributions: general theory
62E10 Characterization and structure theory of statistical distributions
62F10 Point estimation

Software:

optimx; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] David, F. N.; Johnson, N. L., The truncated Poisson, Biometrics, 8, 275-285 (1952) · doi:10.2307/3001863
[2] Shanker, R., A zero-truncated Poisson-Amarendra distribution and its application, Int. J. Prob. Stat., 6, 82-92 (2017)
[3] Shanker, R., Zero-truncated Poisson-Akash distribution and its applications, Am. J. Math. Stat., 7, 227-236 (2016)
[4] Shanker, R.; Shukla, K. K., “A zero-truncated two-parameter Poisson-Lindley distribution with an application to biological science,” Türk, Klinikleri Biyoistat., 9, 85-95 (2017) · doi:10.5336/biostatic.2017-55673
[5] Gupta, R. D.; Kundu, D., A new class of weighted exponential distributions, Statistics, 43, 621-634 (2009) · Zbl 1291.60029 · doi:10.1080/02331880802605346
[6] Zamani, H.; Ismail, N.; Faroughi, P., Poisson-weighted exponential univariate version and regression model with applications, J. Math. Stat., 10, 148-154 (2014) · doi:10.3844/jmssp.2014.148.154
[7] Gut, A., An Intermediate Course in Probability (2009), New York: Springer, New York · Zbl 1166.60300 · doi:10.1007/978-1-4419-0162-0
[8] Johnson, N. L.; Kemp, A. W.; Kotz, S., Univariate Discrete Distributions (2005), New York: Wiley, New York · Zbl 1092.62010 · doi:10.1002/0471715816
[9] Nash, J. C.; Varadhan, R., Unifying optimization algorithms to aid software system users: Optimx for R, J. Stat. Software, 43, 1-14 (2011) · doi:10.18637/jss.v043.i09
[10] R: A Language and Environment for Statistical Computing, (R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2018). https://www.R-project.org/. Accessed 2020.
[11] Guttorp, P., Statistical Inference for Branching Processes (1991), New York: Wiley, New York · Zbl 0778.62077
[12] Hand, D. J.; Daly, F.; Lunn, A. D.; McConway, K. J.; Ostrowski, E., Small Data Sets (1994), New York: Springer Science, New York · Zbl 0949.62500 · doi:10.1007/978-1-4899-7266-8
[13] Choulakian, V.; Lockhart, R. A.; Stephens, M. A., Craḿer-von Mises statistics for discrete distributions, Canad. J. Stat., 22, 125-137 (1994) · Zbl 0800.62235 · doi:10.2307/3315828
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.