×

Immersed boundary finite element method for blood flow simulation. (English) Zbl 1521.76924

Summary: We present an efficient and accurate immersed boundary (IB) finite element (FE) method for numerically solving the incompressible Navier-Stokes equations. Particular emphasis is given to internal flows with complex geometries (blood flow in the vasculature system). IB methods are computationally costly for internal flows, mainly due to the large percentage of grid points that lie outside the flow domain. In this study, we apply a local refinement strategy, along with a domain reduction approach, in order to reduce the grid that covers the flow domain and increase the percentage of grid nodes that fall inside the flow domain. The proposed method utilizes an efficient and accurate FE solver with the incremental pressure correction scheme (IPCS), along with the boundary condition enforced IB method to numerically solve the transient, incompressible Navier-Stokes flow equations. We verify the accuracy of the numerical method using the analytical solution for Poiseuille flow in a cylinder. We further examine the accuracy and applicability of the proposed method by considering flow within complex geometries, such as blood flow in aneurysmal vessels and the aorta, flow configurations which would otherwise be extremely difficult to solve by most IB methods. Our method offers high accuracy, as demonstrated by the verification examples, and high efficiency, as demonstrated through the solution of blood flow within complex geometry on an off-the-shelf laptop computer.

MSC:

76Z05 Physiological flows
76M10 Finite element methods applied to problems in fluid mechanics

Software:

FEniCS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Peskin, C. S., Flow patterns around heart valves: A numerical method, J Comput Phys, 10, 2, 252-271 (1972) · Zbl 0244.92002
[2] Anupindi, K.; Delorme, Y.; Shetty, D. A.; Frankel, S. H., A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics, J Comput Phys, 254, 200-218 (2013) · Zbl 1349.76112
[3] de Zélicourt, D.; Ge, L.; Wang, C.; Sotiropoulos, F.; Gilmanov, A.; Yoganathan, A., Flow simulations in arbitrarily complex cardiovascular anatomies-An unstructured Cartesian grid approach, Comput & Fluids, 38, 9, 1749-1762 (2009) · Zbl 1177.76481
[4] Zhu, C.; Seo, J.-H.; Mittal, R., A graph-partitioned sharp-interface immersed boundary solver for efficient solution of internal flows, J Comput Phys, 386, 37-46 (2019) · Zbl 1452.76288
[5] Löhner, R.; Baum, J. D.; Mestreau, E.; Sharov, D.; Charman, C.; Pelessone, D., Adaptive embedded unstructured grid methods, Internat J Numer Methods Engrg, 60, 3, 641-660 (2004) · Zbl 1060.76574
[6] Lohner̈, R.; Cebral, J. R.; Camelli, F. E.; Appanaboyina, S.; Baum, J. D.; Mestreau, E. L.; Soto, O. A., Adaptive embedded and immersed unstructured grid techniques, Comput Methods Appl Mech Eng, 197, 25, 2173-2197 (2008) · Zbl 1158.76408
[7] Sotiropoulos, F.; Yang, X., Immersed boundary methods for simulating fluid-structure interaction, Prog Aerosp Sci, 65, 1-21 (2014)
[8] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J Comput Phys, 169, 2, 363-426 (2001) · Zbl 1047.76097
[9] Glowinski, R.; Kuznetsov, Y., Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems, Comput Methods Appl Mech Engrg, 196, 8, 1498-1506 (2007) · Zbl 1173.65369
[10] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput Methods Appl Mech Engrg, 193, 21, 2051-2067 (2004) · Zbl 1067.76576
[11] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.; Hong, J.; Chen, X.; Hsu, H., Immersed finite element method and its applications to biological systems, Comput Methods Appl Mech Engrg, 195, 13, 1722-1749 (2006) · Zbl 1178.76232
[12] Duster̈, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput Methods Appl Mech Eng, 197, 45, 3768-3782 (2008) · Zbl 1194.74517
[13] Neittaanmäki, P.; Tiba, D., An embedding of domains approach in free boundary problems and optimal design, SIAM J Control Optim, 33, 5, 1587-1602 (1995) · Zbl 0843.49024
[14] Ramière, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput Methods Appl Mech Engrg, 196, 4, 766-781 (2007) · Zbl 1121.65364
[15] Belytschko, T.; Parimi, C.; Moës, N.; Sukumar, N.; Usui, S., Structured extended finite element methods for solids defined by implicit surfaces, Internat J Numer Methods Engrg, 56, 4, 609-635 (2003) · Zbl 1038.74041
[16] Haslinger, J.; Renard, Y., A new fictitious domain approach inspired by the extended finite element method, SIAM J Numer Anal, 47, 2, 1474-1499 (2009) · Zbl 1205.65322
[17] Legrain, G.; Chevaugeon, N.; Dréau, K., High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation, Comput Methods Appl Mech Engrg, 241-244, 172-189 (2012) · Zbl 1353.74071
[18] Casquero, H.; Bona-Casas, C.; Gomez, H., A NURBS-based immersed methodology for fluid-structure interaction, Comput Methods Appl Mech Engrg, 284, 943-970 (2015) · Zbl 1423.74261
[19] Casquero, H.; Bona-Casas, C.; Toshniwal, D.; Hughes, T. J.; Gomez, H.; Zhang, Y. J., The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics, J Comput Phys, 425, Article 109872 pp. (2021) · Zbl 07508482
[20] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M.-C., The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries, Comput & Fluids, 141, 135-154 (2016) · Zbl 1390.76372
[21] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput Methods Appl Mech Engrg, 284, 1005-1053 (2015) · Zbl 1423.74273
[22] Kamensky, D.; Hsu, M.-C.; Yu, Y.; Evans, J. A.; Sacks, M. S.; Hughes, T. J., Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines, Comput Methods Appl Mech Engrg, 314, 408-472 (2017) · Zbl 1439.76077
[23] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. a stabilized Lagrange multiplier method, Comput Methods Appl Mech Engrg, 199, 41, 2680-2686 (2010) · Zbl 1231.65207
[24] Gerstenberger, A.; Wall, W., An embedded Dirichlet formulation for 3D continua, Int J Numer Methods Eng, 82, 5, 537-563 (2009) · Zbl 1188.74056
[25] Baiges, J.; Codina, R.; Henke, F.; Shahmiri, S.; Wall, W. A., A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes, Int J Numer Methods Eng, 90, 5, 636-658 (2012) · Zbl 1242.76108
[26] Hautefeuille, M.; Annavarapu, C.; Dolbow, J. E., Robust imposition of Dirichlet boundary conditions on embedded surfaces, Int J Numer Methods Eng, 90, 1, 40-64 (2011) · Zbl 1242.76124
[27] Bastian, P.; Engwer, C., An unfitted finite element method using discontinuous Galerkin, Int J Numer Methods Eng, 79, 12, 1557-1576 (2009) · Zbl 1176.65131
[28] Rangarajan, R.; Lew, A.; Buscaglia, G. C., A discontinuous-Galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity, Comput Methods Appl Mech Engrg, 198, 17, 1513-1534 (2009) · Zbl 1227.74091
[29] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 1, 239-261 (2005) · Zbl 1117.76049
[30] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 3, 220-252 (1977) · Zbl 0403.76100
[31] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J Comput Phys, 105, 2, 354-366 (1993) · Zbl 0768.76049
[32] Saiki, E. M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method, J Comput Phys, 123, 2, 450-465 (1996) · Zbl 0848.76052
[33] Lai, M.-C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J Comput Phys, 160, 2, 705-719 (2000) · Zbl 0954.76066
[34] Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J.-P., Fictitious domain approach for numerical modelling of Navier-Stokes equations, Internat J Numer Methods Fluids, 34, 8, 651-684 (2000) · Zbl 1032.76041
[35] Su, S.-W.; Lai, M.-C.; Lin, C.-A., An immersed boundary technique for simulating complex flows with rigid boundary, Comput & Fluids, 36, 2, 313-324 (2007) · Zbl 1177.76299
[36] Glowinski, R.; Pan, T.; Périaux, J., Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput Methods Appl Mech Engrg, 151, 1, 181-194 (1998) · Zbl 0916.76052
[37] Lee, L.; LeVeque, R. J., An immersed interface method for incompressible Navier-Stokes Equations, SIAM J Sci Comput, 25, 3, 832-856 (2003) · Zbl 1163.65322
[38] Taira, K.; Colonius, T., The immersed boundary method: A projection approach, J Comput Phys, 225, 2, 2118-2137 (2007) · Zbl 1343.76027
[39] Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, 317-327 (1997), Annual Research Briefs. NASA Ames Research Center, URL https://web.stanford.edu/group/ctr/ResBriefs97/myusof.pdf
[40] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J Comput Phys, 161, 1, 35-60 (2000) · Zbl 0972.76073
[41] Balaras, E., Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Comput & Fluids, 33, 3, 375-404 (2004) · Zbl 1088.76018
[42] Gilmanov, A.; Sotiropoulos, F.; Balaras, E., A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on cartesian grids, J Comput Phys, 191, 2, 660-669 (2003) · Zbl 1134.76406
[43] Zhang, N.; Zheng, Z., An improved direct-forcing immersed-boundary method for finite difference applications, J Comput Phys, 221, 1, 250-268 (2007) · Zbl 1108.76051
[44] Choi, J.-I.; Oberoi, R. C.; Edwards, J. R.; Rosati, J. A., An immersed boundary method for complex incompressible flows, J Comput Phys, 224, 2, 757-784 (2007) · Zbl 1123.76351
[45] Ghommem, M.; Bourantas, G.; Wittek, A.; Miller, K.; Hajj, M. R., Hydrodynamic modeling and performance analysis of bio-inspired swimming, Ocean Eng, 197, Article 106897 pp. (2020)
[46] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J Comput Phys, 228, 6, 1963-1979 (2009) · Zbl 1243.76081
[47] Goda, K., A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J Comput Phys, 30, 1, 76-95 (1979) · Zbl 0405.76017
[48] Fenics project (2019), URL https://fenicsproject.org
[49] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math Comp, 22, 104, 745-762 (1968) · Zbl 0198.50103
[50] Témam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Arch Ration Mech Anal, 32, 2, 135-153 (1969) · Zbl 0195.46001
[51] Khan, M. O.; Valen-Sendstad, K.; Steinman, D. A., Direct numerical simulation of laminar-turbulent transition in a non-axisymmetric stenosis model for Newtonian vs. Shear-thinning non-Newtonian rheologies, Flow Turbul Combust, 102, 1, 43-72 (2019), URL https://doi.org/10.1007/s10494-018-9905-7
[52] Bathe, K.-J., The inf-sup condition and its evaluation for mixed finite element methods, Comput Struct, 79, 2, 243-252 (2001)
[53] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J Comput Phys, 209, 2, 448-476 (2005) · Zbl 1138.76398
[54] Kang, S. K.; Hassan, Y. A., A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, Internat J Numer Methods Fluids, 66, 9, 1132-1158 (2011) · Zbl 1331.76099
[55] Lima E. Silva, A. L.F.; Silveira-Neto, A.; Damasceno, J. J.R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J Comput Phys, 189, 2, 351-370 (2003) · Zbl 1061.76046
[56] Bourantas, G. C.; Cheeseman, B. L.; Ramaswamy, R.; Sbalzarini, I. F., Using DC PSE operator discretization in Eulerian meshless collocation methods improves their robustness in complex geometries, Comput & Fluids, 136, 285-300 (2016) · Zbl 1390.76645
[57] Mikhal, J.; Geurts, B., Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms, J Math Biol, 67, 6-7, 1847-1875 (2013) · Zbl 1282.76090
[58] Plaza, A.; Carey, G., Local refinement of simplicial grids based on the skeleton, Appl Numer Math, 32, 2, 195-218 (2000) · Zbl 0940.65142
[59] Van De Vosse, F. N.; Van Steenhoven, A. A.; Segal, A.; Janssen, J. D., A finite element analysis of the steady laminar entrance flow in a 90° curved tube, Internat J Numer Methods Fluids, 9, 3, 275-287 (1989) · Zbl 0664.76039
[60] Wittek, A.; Joldes, G.; Couton, M.; Warfield, S. K.; Miller, K., Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; application to non-rigid neuroimage registration, Prog Biophys Mol Biol, 103, 2, 292-303 (2010), Special Issue on Biomechanical Modelling of Soft Tissue Motion
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.