×

Exponential time differencing for the tracer equations appearing in primitive equation ocean models. (English) Zbl 1442.86001

Summary: The tracer equations are part of the primitive equations used in ocean modeling and describe the transport of tracers, such as temperature, salinity or chemicals, in the ocean. Depending on the number of tracers considered, several equations may be added to and coupled to the dynamics system. In many relevant situations, the time-step requirements of explicit methods imposed by the transport and mixing in the vertical direction are more restrictive than those for the horizontal, and this may cause the need to use very small time steps if a fully explicit method is employed. To overcome this issue, we propose an exponential time differencing (ETD) solver where the vertical terms (transport and diffusion) are treated with a matrix exponential, whereas the horizontal terms are dealt with in an explicit way. We investigate numerically the computational speed-ups that can be obtained over other semi-implicit methods, and we analyze the advantages of the method in the case of multiple tracers.

MSC:

86-08 Computational methods for problems pertaining to geophysics
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Siberlin, C.; Wunsch, C., Oceanic tracer and proxy time scales revisited, Climate of the Past, 7, 1, 27-39 (2011)
[2] Chiodaroli, E.; Michálek, M., Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations, Comm. Math. Phys., 353, 3, 1201-1216 (2017) · Zbl 1373.35238
[3] Oliger, J.; Sundström, A., Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math., 35, 3, 419-446 (1978) · Zbl 0397.35067
[4] Ringler, T.; Petersen, M.; Higdon, R. L.; Jacobsen, D.; Jones, P. W.; Maltrud, M., A multi-resolution approach to global ocean modeling, Ocean Model., 69, 211-232 (2013)
[5] Smith, R.; Jones, P.; Briegleb, B.; Bryan, F.; Danabasoglu, G.; Dennis, J.; Dukowicz, J.; Eden, C.; Fox-Kemper, B.; Gent, P., The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM)Rep. LAUR-01853 141, 1-140 (2010)
[6] Dukowicz, J. K.; Smith, R. D., Implicit free-surface method for the Bryan-Cox-Semtner ocean model, J. Geophys. Res.: Oceans, 99, C4, 7991-8014 (1994)
[7] Higdon, R. L., A two-level time-stepping method for layered ocean circulation models: further development and testing, J. Comput. Phys., 206, 2, 463-504 (2005) · Zbl 1121.86002
[8] Pieper, K.; Sockwell, K. C.; Gunzburger, M., Exponential time differencing for mimetic multilayer ocean models, J. Comput. Phys., 368, 108900 (2019) · Zbl 1453.86019
[9] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[10] Eiermann, M.; Ernst, O. G., A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal., 44, 6, 2481-2504 (2006) · Zbl 1129.65019
[11] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 1, 209-228 (1992) · Zbl 0749.65030
[12] Al-Mohy, A. H.; Higham, N. J., A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31, 3, 970-989 (2009) · Zbl 1194.15021
[13] Dieci, L.; Papini, A., Padé approximation for the exponential of a block triangular matrix, Linear Algebra Appl., 308, 1-3, 183-202 (2000) · Zbl 0958.65050
[14] Higham, N. J., The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26, 4, 1179-1193 (2005) · Zbl 1081.65037
[15] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45, 1, 3-49 (2003) · Zbl 1030.65029
[16] Najfeld, I.; Havel, T. F., Derivatives of the matrix exponential and their computation, Adv. in Appl. Math., 16, 3, 321-375 (1995) · Zbl 0839.15004
[17] Archibald, R.; Evans, K. J.; Drake, J.; White III, J. B., Multiwavelet discontinuous Galerkin-accelerated exact linear part (ELP) method for the shallow-water equations on the cubed sphere, Mon. Weather Rev., 139, 2, 457-473 (2011)
[18] Ilıcak, M.; Adcroft, A. J.; Griffies, S. M.; Hallberg, R. W., Spurious dianeutral mixing and the role of momentum closure, Ocean Model., 45, 37-58 (2012)
[19] Petersen, M. R.; Jacobsen, D. W.; Ringler, T. D.; Hecht, M. W.; Maltrud, M. E., Evaluation of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-ocean model, Ocean Model., 86, 93-113 (2015)
[20] Ringler, T. D.; Jacobsen, D.; Gunzburger, M.; Ju, L.; Duda, M.; Skamarock, W., Exploring a multiresolution modeling approach within the shallow-water equations, Mon. Weather Rev., 139, 11, 3348-3368 (2011)
[21] Reckinger, S. M.; Petersen, M. R.; Reckinger, S. J., A study of overflow simulations using MPAS-ocean: Vertical grids, resolution, and viscosity, Ocean Model., 96, 291-313 (2015)
[22] Clancy, C.; Pudykiewicz, J. A., On the use of exponential time integration methods in atmospheric models, Tellus A: Dynamic Meteorology and Oceanography, 65, 1, 20898 (2013)
[23] Gaudreault, S.; Pudykiewicz, J. A., An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere, J. Comput. Phys., 322, 827-848 (2016) · Zbl 1351.76106
[24] Luan, V. T.; Pudykiewicz, J. A.; Reynolds, D. R., Further development of efficient and accurate time integration schemes for meteorological models, J. Comput. Phys., 376, 817-837 (2019) · Zbl 1416.86011
[25] Hochbruck, M.; Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 3, 1069-1090 (2005) · Zbl 1093.65052
[26] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20, 4, 801-836 (1978) · Zbl 0395.65012
[27] Sidje, R. B., Expokit: a software package for computing matrix exponentials, ACM Trans. Math. Softw., 24, 1, 130-156 (1998) · Zbl 0917.65063
[28] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 5, 1911-1925 (1997) · Zbl 0888.65032
[29] Roman, J. E.; Campos, C.; Romero, E.; Tomás, A., SLEPc users manualTech. Rep. DSIC-II/24/02-Revision 3 (2015), D. Sistemes Informatics i Computació, Universitat Politecnica de Valencia
[30] Afanasjew, M.; Eiermann, M.; Ernst, O. G.; Güttel, S., Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429, 10, 2293-2314 (2008) · Zbl 1153.65042
[31] Beylkin, G.; Keiser, J. M.; Vozovoi, L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147, 2, 362-387 (1998) · Zbl 0924.65089
[32] Koikari, S., An error analysis of the modified scaling and squaring method, Comput. Math. Appl., 53, 8, 1293-1305 (2007) · Zbl 1134.65053
[33] Skaflestad, B.; Wright, W. M., The scaling and modified squaring method for matrix functions related to the exponential, Appl. Numer. Math., 59, 3-4, 783-799 (2009) · Zbl 1160.65034
[34] Ketcheson, D.; Ahmadia, A., Optimal stability polynomials for numerical integration of initial value problems, Commun. Appl. Math. Comput. Sci., 7, 2, 247-271 (2013) · Zbl 1259.65114
[35] E. Aulisa, S. Bna, G. Bornia, FEMuS Library, https://github.com/FeMTTU/femus.
[36] Manzini, G.; Russo, A., A finite volume method for advection-diffusion problems in convection-dominated regimes, Comput. Methods Appl. Mech. Engrg., 197, 13-16, 1242-1261 (2008) · Zbl 1159.76356
[37] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[38] Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C., A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.: Oceans, 102, C3, 5753-5766 (1997) · Zbl 0907.58089
[39] Griffies, S.; Schmidt, M.; Herzfeld, M. (2009), NOAA/Geophysical Fluid Dynamics Laboratory
[40] Benjamin, T., Gravity currents and related phenomena, J. Fluid Mech., 31, 2, 209-248 (1968) · Zbl 0169.28503
[41] Gouillon, F., Internal wave propagation and numerically induced diapycnal mixing in oceanic general circulation models (2010), Florida State University, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.