×

Well-posedness for compressible MHD systems with highly oscillating initial data. (English) Zbl 1346.76209

Summary: In this paper, a unique local solution for compressible magnetohydrodynamics systems has been constructed in the critical Besov space framework by converting the system in Euler coordinates to a system in Lagrange coordinates. Our results improve the range of the Lebesgue exponent in the Besov space from \([2,N)\; \text{to}\; [2,2N)\), where \(N\) denotes the space dimension. Then, we give a lower bound for the maximal existence time, which is important for our construction of global solutions. Based on the lower bound, we use the effective viscous flux and Hoff’s energy method to obtain the unique global solution, which allows the initial velocity field and the magnetic field to have large energies and allows the initial density to exhibit large oscillations on a set of small measure.{
©2016 American Institute of Physics}

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
49K40 Sensitivity, stability, well-posedness
30H25 Besov spaces and \(Q_p\)-spaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bahouri, H.; Chemin, J.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations (2011) · Zbl 1227.35004
[2] Chemin, J.; Lerner, N., Flot de champs de vecteurs non lipschitziens etéquations de Navier-Stokes, J. Differ. Equations, 121, 314-328 (1992) · Zbl 0878.35089 · doi:10.1006/jdeq.1995.1131
[3] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem. I, Arch. Ration. Mech. Anal., 16, 269-315 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[4] Weissler, F. B., The Navier-Stokes initial value problem in \(L^p\), Arch. Ration. Mech. Anal., 74, 219-230 (1980) · Zbl 0454.35072 · doi:10.1007/BF00280539
[5] Cannone, M.; Meyer, Y.; Planchon, F., Solutions auto-similaires des équations de Navier-Stokes, Séminaire sur les Équations aux Dërivées Partielles, 1993-1994 (1994) · Zbl 0882.35090
[6] Cannone, M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13, 515-541 (1997) · Zbl 0897.35061 · doi:10.4171/RMI/229
[7] Gallagher, I.; Planchon, F., On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Ration. Mech. Anal., 161, 307-337 (2002) · Zbl 1027.35090 · doi:10.1007/s002050100175
[8] Chemin, J. Y.; Gallagher, I., Well-posedness and stability results for the Navier-Stokes equations in \(ℝ^3\), Ann. Inst. Henri Poincare (C) Nonlinear Anal., 26, 599-624 (2009) · Zbl 1165.35038 · doi:10.1016/j.anihpc.2007.05.008
[9] Gallagher, I.; Iftimie, D.; Planchon, F., Well-posedness and stability results for the Navier-Stokes equations in \(ℝ^3\), Ann. Inst. Henri Poincare-AN, 53, 1389-1424 (2003) · Zbl 1038.35054
[10] Chemin, J. Y.; Gallagher, I., On the global well-posedness of the 3-D Navier-Stokes equations with large initial data, Ann. Sci. Ec. Norm. Super., 39, 679-698 (2006) · Zbl 1124.35052 · doi:10.1016/j.ansens.2006.07.002
[11] Chemin, J. Y.; Gallagher, I., Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Am. Math. Soc., 362, 2859-2873 (2007) · Zbl 1189.35220 · doi:10.1090/S0002-9947-10-04744-6
[12] Danchin, R., Fourier Analysis Methods for PDE’s (2005) · Zbl 1125.76061
[13] Chen, Q.; Miao, C.; Zhang, Z., Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Commun. Pure Appl. Math., 63, 1173-1224 (2010) · Zbl 1205.35188 · doi:10.1002/cpa.20332
[14] Charve, F.; Danchin, R., A gloal existence result for the compressible Navier-Stokes equations in the critical \(L^p\) framework, Arch. Ration. Mech. Anal., 198, 233-271 (2010) · Zbl 1229.35167 · doi:10.1007/s00205-010-0306-x
[15] Wang, C.; Wang, W.; Zhang, Z., Global well-posedness of compressible Navier-Stokes equations for some classes of large initial data, Arch. Ration. Mech. Anal., 213, 171-214 (2014) · Zbl 1293.35258 · doi:10.1007/s00205-014-0735-z
[16] Hu, X.; Wang, D., Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197, 203-238 (2010) · Zbl 1198.35197 · doi:10.1007/s00205-010-0295-9
[17] Hu, X.; Wang, D., Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Commun. Math. Phys., 283, 255-284 (2008) · Zbl 1158.35075 · doi:10.1007/s00220-008-0497-2
[18] Hu, X.; Wang, D., Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41, 1272-1294 (2009) · Zbl 1188.35146 · doi:10.1137/080723983
[19] Lin, F.; Zhang, P., Global small solutions to an MHD-type system: The three-dimensional case, Commun. Pure Appl. Math., 67, 531-580 (2014) · Zbl 1298.35153 · doi:10.1002/cpa.21506
[20] Xu, L.; Zhang, P., Global small solutions to three-dimensional incompressible MHD system, SIAM J. Math. Anal., 47, 26-65 (2015) · Zbl 1352.35099 · doi:10.1137/14095515X
[21] Lin, F.; Xu, L.; Zhang, P., Global small solutions to 2-D incompressible MHD system, J. Differ. Equations, 256, 5440-5485 (2015) · Zbl 1321.35138 · doi:10.1016/j.jde.2015.06.034
[22] Hu, X., “Global existence for two dimensional compressible magnetohydrodynamic flows with zero magnetic diffusivity,” preprint (2014).
[23] Suen, A.; Hoff, D., Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 205, 27-58 (2012) · Zbl 1284.76414 · doi:10.1007/s00205-012-0498-3
[24] Hoff, D., Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinous initial data, J. Differ. Equations, 120, 215-254 (1995) · Zbl 0836.35120 · doi:10.1006/jdeq.1995.1111
[25] Hoff, D., Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids, Arch. Ration. Mech. Anal., 139, 303-354 (1997) · Zbl 0904.76074 · doi:10.1007/s002050050055
[26] Li, H.; Xu, X.; Zhang, J., Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45, 1356-1387 (2013) · Zbl 1278.35195 · doi:10.1137/120893355
[27] Liu, S.; Yu, H.; Zhang, J., Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum, J. Differ. Equations, 254, 229-255 (2013) · Zbl 1310.76182 · doi:10.1016/j.jde.2012.08.006
[28] Hao, C., Well-posedness to the compressible viscous magnetohydrodynamic system, Nonlinear Anal.: Real World Appl., 12, 2962-2972 (2011) · Zbl 1231.76349 · doi:10.1016/j.nonrwa.2011.04.017
[29] Zhang, J.; Zhao, J., Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8, 835-850 (2010) · Zbl 1372.76115 · doi:10.4310/CMS.2010.v8.n4.a2
[30] Li, F.; Yu, H., Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. R. Soc. Edinburgh: Sec. A Math., 141, 109-126 (2011) · Zbl 1218.35038 · doi:10.1017/S0308210509001632
[31] Tan, Z.; Wang, H., Optimal decay rates of the compressible magnetohydrodynamic equations, Nonlinear Anal.: Real World Appl., 14, 88-201 (2013) · Zbl 1254.76175 · doi:10.1016/j.nonrwa.2012.05.012
[32] Chen, Q.; Tan, Z., Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal., 72, 4438-4451 (2010) · Zbl 1423.76486 · doi:10.1016/j.na.2010.02.019
[33] Danchin, R., Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 579-614 (2000) · Zbl 0958.35100 · doi:10.1007/s002220000078
[34] Danchin, R., Global existence in critical space for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160, 1-39 (2001) · Zbl 1018.76037 · doi:10.1007/s002050100155
[35] Bian, D.; Guo, B., Well-posedness in critical spaces for the full compressible MHD equations, Acta Math. Sci., 33, 1153-1176 (2013) · Zbl 1299.76298 · doi:10.1016/s0252-9602(13)60071-5
[36] Bian, D.; Yuan, B., Local well-posedness in critical spaces for the compressible MHD equations, Appl. Anal., 95, 239-269 (2016) · Zbl 1333.76089 · doi:10.1080/00036811.2014.910651
[37] Kawashima, S., System of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics (1984)
[38] Noboru, C.; Danchin, R., On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differ. Equations, 258, 3435-3467 (2015) · Zbl 1311.35185 · doi:10.1016/j.jde.2015.01.012
[39] Chen, Q.; Miao, C.; Zhang, Z., Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26, 915-946 (2010) · Zbl 1205.35189 · doi:10.4171/RMI/621
[40] Sun, Y.; Wang, C.; Zhang, Z., A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95, 36-47 (2011) · Zbl 1205.35212 · doi:10.1016/j.matpur.2010.08.001
[41] Sun, Y.; Wang, C.; Zhang, Z., A Beale-Kato-Majda criterion for three dimensional sompressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., 201, 727-742 (2011) · Zbl 1452.76204 · doi:10.1007/s00205-011-0407-1
[42] Jia, J.; Peng, J.; Mei, Z., Well-posedness and time-decay for compressible viscoelastic fluids in critical Besov space, J. Math. Anal. Appl., 418, 638-675 (2014) · Zbl 1311.35219 · doi:10.1016/j.jmaa.2014.04.008
[43] Danchin, R., Local theory in critical spaces for compressible viscous and heat-conductive gases, Commun. Partial Differ. Equations, 26, 1183-1233 (2001) · Zbl 1007.35071 · doi:10.1081/PDE-100106132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.