×

Simulation of the double emulsion formation through a hierarchical T-junction microchannel. (English) Zbl 1356.76118

Summary: Purpose{ } - The purpose of this paper is to present a practical way to create three kinds of double emulsions such as double emulsion, double-component double emulsion and viscoelastic double emulsion. { }Design/methodology/approach{ } - A hierarchical T-junction microfluidic device is selected to simulate this phenomenon. A system of the three-phase flows consists of the inner, middle and outer phases were simulated by the direct numerical simulation (DNS) method. The dripping regime is considered for the droplet formation in both T-junctions. The adaptive mesh refinement technique is used to simulate the droplet formation and determine the interface rupture. { }Findings{ } - The one-step and two-step encapsulation are used to create the double emulsion and the viscoelastic double emulsion, respectively. In both T-junctions, droplets are created by the balance of three parameters which are instability, viscous drag and pressure buildup. The one-step formation of double emulsion is presented for encapsulates the viscoelastic fluid. { }Originality/value{ } - The simulated hierarchical microchannel shows some desirable features for creating the complex compounds. The encapsulation process is simulated in micro-scale that is useful for drug delivery applications.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76A10 Viscoelastic fluids
76T99 Multiphase and multicomponent flows

Software:

Gerris
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abate, A.R. , Thiele, J. and Weitz, D.A. (2011), ”One-step formation of multiple emulsions in microfluidics”, Lab on a Chip , Vol. 11 No. 2, pp. 253-258. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[2] Chen, X. and Yang, V. (2014), ”Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions”, Journal of Computational Physics , Vol. 269, pp. 22-39. , · Zbl 1349.76594 · doi:10.1108/HFF-09-2014-0294
[3] Chen, X. , Ma, D. , Yang, V. and Popinet, S. (2013), ”High-fidelity simulations of impinging jet atomization”, Atomization and Sprays , Vol. 23 No. 12, pp. 1079-1101. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[4] Choi, C.H. , Weitz, D.A. and Lee, C.S. (2013), ”One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position”, Advanced Materials , Vol. 25 No. 18, pp. 2536-2541. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[5] Hegde, P. , Seetharamu, K. , Quadir, G. , Aswathanarayana, P. , Abdullah, M. and Zainal, Z. (2005), ”Thermal analysis of micro-channel heat exchangers with two-phase flow using FEM”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 15 No. 1, pp. 43-60. , · Zbl 1162.76398 · doi:10.1108/HFF-09-2014-0294
[6] Khalid, N. , Kobayashi, I. , Neves, M.A. , Uemura, K. , Nakajima, M. and Nabetani, H. (2014), ”Monodisperse W/O/W emulsions encapsulating l-ascorbic acid: insights on their formulation using microchannel emulsification and stability studies”, Colloids and Surfaces A: Physicochemical and Engineering Aspects , Vol. 458, pp. 69-77. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[7] Köster, S. , Angile, F.E. , Duan, H. , Agresti, J.J. , Wintner, A. , Schmitz, C. , Rowat, C.A. , Merten, C.A. , Pisignano, D. and Griffiths, A.D. (2008), ”Drop-based microfluidic devices for encapsulation of single cells”, Lab on a Chip , Vol. 8 No. 7, pp. 1110-1115. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[8] Li, X.-B. , Li, F.-C. , Yang, J.-C. , Kinoshita, H. , Oishi, M. and Oshima, M. (2012), ”Study on the mechanism of droplet formation in T-junction microchannel”, Chemical Engineering Science , Vol. 69 No. 1, pp. 340-351. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[9] Nisisako, T. , Okushima, S. and Torii, T. (2005), ”Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system”, Soft Matter , Vol. 1 No. 1, pp. 23-27. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[10] Park, J.M. and Anderson, P.D. (2012), ”A ternary model for double-emulsion formation in a capillary microfluidic device”, Lab on a Chip , Vol. 12, pp. 2672-2677. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[11] Popinet, S. (2003), ”Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries”, Journal of Computational Physics , Vol. 190 No. 2, pp. 572-600. , · Zbl 1076.76002 · doi:10.1108/HFF-09-2014-0294
[12] Popinet, S. (2009), ”An accurate adaptive solver for surface-tension-driven interfacial flows”, Journal of Computational Physics , Vol. 228 No. 16, pp. 5838-5866. , · Zbl 1280.76020 · doi:10.1108/HFF-09-2014-0294
[13] Roul, M.K. and Dash, S.K. (2009), ”Pressure drop caused by two-phase flow of oil/water emulsions through sudden expansions and contractions: a computational approach”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 19 No. 5, pp. 665-688. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[14] Shao, B. , Sun, Z. and Wang, L. (2007), ”Optimization design of microchannel cooling heat sink”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 17 No. 6, pp. 628-637. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[15] Tao, J. , Song, X. , Liu, J. and Wang, J. (2013), ”Microfluidic rheology of the multiple-emulsion globule transiting in a contraction tube through a boundary element method”, Chemical Engineering Science , Vol. 97, pp. 328-336. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[16] Wang, W. , Xie, R. , Ju, X.-J. , Luo, T. , Liu, L. , Weitz, D.A. and Chu, L.-Y. (2011), ”Controllable microfluidic production of multicomponent multiple emulsions”, Lab Chip , Vol. 11 No. 9, pp. 1587-1592. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[17] Wroński, S. , Vladimirov, V. and Adach, A. (2012), ”Modelling of mass transfer from multiple emulsions”, International Journal of Heat and Mass Transfer , Vol. 55 No. 15, pp. 4241-4245. · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[18] Yeom, S. and Lee, S.Y. (2011), ”Size prediction of drops formed by dripping at a micro T-junction in liquid-liquid mixing”, Experimental Thermal and Fluid Science , Vol. 35 No. 2, pp. 387-394. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
[19] Zhou, C. , Yue, P. and Feng, J.J. (2006), ”Formation of simple and compound drops in microfluidic devices”, Physics of Fluids (1994-Present) , Vol. 18 No. 9, pp. 092105-14. , · Zbl 1356.76118 · doi:10.1108/HFF-09-2014-0294
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.