×

A set of decentralized PID controllers for an \(n\)-link robot manipulator. (English) Zbl 1322.93074

Summary: A class of stabilizing decentralized proportional integral derivative (PID) controllers for an \(n\)-link robot manipulator system is proposed. The range of decentralized PID controller parameters for an \(n\)-link robot manipulator is obtained using Kharitonov theorem and stability boundary equations. Basically, the proposed design technique is based on the gain-phase margin tester and Kharitonov’s theorem that synthesizes a set of PID controllers for the linear model while nonlinear interaction terms involve in system dynamics are treated as zero. The stability analysis of the composite system with the designed set of decentralized PID controllers is investigated by incorporating bounding parameters of interconnection terms in LMI formulation. From the range of controller gains obtained by the proposed method, a genetic algorithm is adopted to get an optimal controller gains so that the tracking error is minimum. Simulation results are shown to demonstrate the applicability of the proposed control scheme for solution of fixed as well as time-varying trajectory tracking control problems.

MSC:

93C85 Automated systems (robots, etc.) in control theory

Software:

LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boyd S, Feron E, Ghaoui L E and Balakrishnan V 1994 Linear matrix inequalities in system and control theory (Philadelphia: Siam) · Zbl 0816.93004
[2] Cao Y Y and Lin Z 2004 A descriptor system approach to robust stability analysis and controller synthesis. IEEE Trans. Automatic Control 49(11): 2081–2084 · Zbl 1365.93363 · doi:10.1109/TAC.2004.837749
[3] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI Control toolbox for use with Matlab (Natik, MA: The Math works Inc.)
[4] Garofalo F, Celentano G and Glielmo L 1993 Stability robustness of interval matrices via Lyapunov quadratic forms. IEEE Trans. Automatic Control 38(2): 281–284 · Zbl 0774.93061 · doi:10.1109/9.250472
[5] Goldberg D E 1989 Genetic algorithms in search, optimization, and machine learning (Boston, MA, USA: Addison Wesley) · Zbl 0721.68056
[6] Huang Y J and Wang Y J 2000 Robust PID tuning strategy for uncertain plants based on the Kharitonov’s Theorem. ISA Trans. 39(4): 419–431 · doi:10.1016/S0019-0578(00)00026-4
[7] Jiang C L 1987 Sufficient condition for the asymptotic stability of interval matrices. Int. J. Control 46(5): 1803–1810 · Zbl 0631.15009 · doi:10.1080/00207178708934011
[8] Lii G H, Chang C H and Han K W 1993 Analysis of Robust Control Systems using stability equations. J. Control Syst. Technol. 1: 83–89
[9] Lin F and Brandt R D 1998 An optimal control approach to robust control of robot manipulators. IEEE Trans. Robotics Automation 14(1): 69–77 · doi:10.1109/70.660845
[10] Lin C, Wang Q G and Lee T H 2005 Robust normalization and stabilization of uncertain descriptor systems with norm-bounded perturbations. IEEE Trans. Automatic Control 50(4): 515–520 · Zbl 1365.93451 · doi:10.1109/TAC.2005.844908
[11] Liu M 1999 Decentralized control of robot manipulators: nonlinear and adaptive approaches. IEEE Trans. Automatic Control 44(2): 357–363 · Zbl 0958.93072 · doi:10.1109/9.746266
[12] Mansour M 1988 Sufficient condition for the asymptotic stability of interval matrices. Int. J. Control 47(6): 1973–1974 · Zbl 0648.15006 · doi:10.1080/00207178808906151
[13] Meressi T, Chen D and Paden B 1993 Application of Kharitonov’s Theorem to Mechanical Systems. IEEE Trans. Automatic Control 38(3): 488–491 · Zbl 0789.93103 · doi:10.1109/9.210153
[14] Narendra K S and Oleng N O 2002 Exact output tracking in decentralized adaptive control systems. IEEE Trans. Automatic Control 47(2): 390–395 · Zbl 1364.93406 · doi:10.1109/9.983386
[15] Qu Z and Dawson D M 1996 Robust tracking control of robot manipulators (New York: IEEE press) · Zbl 0918.93030
[16] Seraji H 1989 Decentralized adaptive control of manipulators: Theory, simulation, and experimentation. IEEE Trans. Robotics Automation 5(2): 183–201 · doi:10.1109/70.88039
[17] Siljak D D 1969 Nonlinear systems: The parameter analysis and design (N.Y: John Wiley & Sons) · Zbl 0194.39302
[18] Siljak D D and Stipanovic D M 2000 Robust stabilization of nonlinear systems: The LMI approach. Math. Prob. Eng. 6: 461–493 · Zbl 0968.93075 · doi:10.1155/S1024123X00001435
[19] Tang Y and Guerrero G 1998 Decentralized robust control of robot manipulators. Proc. of 1998 American Control Conference, vol. 2, pp 922–926
[20] Tang Y, Tomizuka M, Guerrero G and Montemayor G 2000 Decentralized robust control of mechanical systems. IEEE Trans. Automatic Control 45(4): 771–776 · Zbl 1009.93058 · doi:10.1109/9.847120
[21] Tarokh M 1996 Decentralized adaptive tracking control of robot manipulators. J. Robotic Syst. 13(12): 803–816 · Zbl 0889.70021 · doi:10.1002/(SICI)1097-4563(199612)13:12<803::AID-ROB3>3.0.CO;2-Z
[22] Wang J-Q and Wend H D 1999 Robust decentralized control of robot manipulators. Int. J. Syst. Sci. 30(3): 323–330 · Zbl 1119.93387 · doi:10.1080/002077299292461
[23] Yakubovich V A 1977 The S-procedure in nonlinear control theory, English translation in Vestnik Leningrad Univ. Math. 4: 73–93
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.