×

Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes. (English) Zbl 1351.76104

Summary: The following work is devoted to the construction and validation of a numerical scheme for the 2D shallow water system on unstructured meshes, supplemented by topography and friction source terms. Approximate solutions of frictionless flows are obtained considering a suitable formulation of the conservation laws, involving the water free surface and some fractions of water, accounting for the topography variations. The discretization of the friction source terms relies on the use of a modified Riemann solver for the flux computation. The resulting scheme is then corrected in order to achieve an asymptotic regime preservation. A MUSCL reconstruction is also performed to increase the space order of accuracy. The overall numerical approach is shown to be consistent, well-balanced and to satisfy a domain invariant principle. These results are assessed through several benchmark tests, involving complex geometry and varying bathymetry. In the presence of dry areas, special interest is given to the wave front speed computation, highlighting the stability of the method, even when implementing the asymptotic preserving correction.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Software:

VOLNA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aregba-Driollet, D.; Briani, M.; Natalini, R., Asymptotic high order preserving schemes for 2 × 2 dissipative hyperbolic systems, SIAM J. Numer. Anal., 46, 869-894 (2008) · Zbl 1176.65086
[2] Audusse, E.; Bouchut, F.; Bristeau, M. O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 2050-2065 (2004) · Zbl 1133.65308
[3] Audusse, E.; Bristeau, M. O., A well balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes, J. Comput. Phys., 206, 311-333 (2005) · Zbl 1087.76072
[4] Aureli, F.; Mignosa, P.; Tomirotti, M., Dam-break flows in presence of abrupt bottom variations, (Proc. XXVIII IAHR Congr.. Proc. XXVIII IAHR Congr., Graz, Austria (1999)), 163-171
[5] Benkhaldoun, F.; Elmahi, I.; Seaid, M., A new finite volume method for flux-gradient and source-term balancing in shallow water equations, Comput. Methods Appl. Mech. Eng., 199, 3324-3335 (2010) · Zbl 1225.76209
[6] Bermudez, A.; Vazquez, M.-E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 1049-1071 (1994) · Zbl 0816.76052
[7] Berthon, C.; Charrier, P.; Dubroca, B., An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions, J. Sci. Comput., 31, 347-389 (2007) · Zbl 1133.85003
[8] Berthon, C.; Dubois, J.; Dubroca, B.; Nguyen-Bui, T.-H.; Turpault, R., A free streaming contact preserving scheme for the M1 model, Adv. Appl. Math. Mech., 2, 259-285 (2010) · Zbl 1262.65097
[9] Berthon, C.; Foucher, F., Efficient well balanced hydrostatic upwind schemes for shallow water equations, J. Comput. Phys., 231, 4993-5015 (2012) · Zbl 1351.76095
[10] Berthon, C.; LeFloch, P.; Turpault, R., Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations, Math. Comput., 82, 831-860 (2013) · Zbl 1317.65182
[11] Berthon, C.; Marche, F.; Turpault, R., An efficient scheme on wet/dry transitions for shallow water equations with friction, Comput. Fluids, 48, 192-201 (2011) · Zbl 1271.76178
[12] Berthon, C.; Turpault, R., Asymptotic preserving HLL schemes, Numer. Methods Partial Differ. Equ., 27, 1396-1422 (2011) · Zbl 1237.65100
[13] Bianchini, S.; Hanouzet, B.; Natalini, R., Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Commun. Pure Appl. Math., 60, 1559-1622 (2007) · Zbl 1152.35009
[15] Bollermann, A.; Noelle, S.; Lukacova-Medvidova, M., Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10, 371-404 (2011) · Zbl 1364.76109
[16] Bouchut, F., Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources, Frontiers in Mathematics (2004), Birkhäuser · Zbl 1086.65091
[17] Bouchut, F.; Ounaissa, H.; Perthame, B., Upwinding of the source term at interfaces for Euler equations with high friction, Comput. Math. Appl., 53, 361-375 (2007) · Zbl 1213.76123
[18] Bradford, S. F.; Sanders, B. F., Finite-volume model for shallow-water flooding of arbitrary topography, J. Hydrol. Eng., 128, 289-298 (2002)
[19] Bristeau, M.-O.; Coussin, B., Boundary conditions for the shallow water equations solved by kinetic schemes (2001), INRIA Report RR-4282
[20] Brodtkorb, A. R.; Sætra, M. L.; Altinakar, M., Efficient shallow water simulations on GPUs: implementation, visualization, verification and validation, Comput. Fluids, 55, 1-12 (2012) · Zbl 1291.76254
[21] Buet, C.; Cordier, S., An asymptotic preserving scheme for hydrodynamics radiative transfer models: numerical scheme for radiative transfer, Numer. Math., 108, 199-221 (2007) · Zbl 1127.76032
[22] Buet, C.; Després, B., Asymptotic preserving and positive schemes for radiation hydrodynamics, J. Comput. Phys., 215, 717-740 (2006) · Zbl 1090.76046
[23] Buet, C.; Després, B.; Franck, E., Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes, Numer. Math., 122, 227-278 (2012) · Zbl 1263.65085
[24] Camarri, S.; Salvetti, M. V.; Koobus, B.; Dervieux, A., A low-diffusion muscl scheme for LES on unstructured grids, Comput. Fluids, 33, 1101-1129 (2004) · Zbl 1085.76027
[25] Castro, M.; Milanes, A.; Pares, C., Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Math. Models Methods Appl. Sci., 17, 2055-2113 (2007) · Zbl 1137.76038
[26] Cea, L.; Vázquez-Cendón, M. E., Unstructured finite volume discretization of bed friction and convective flux in solute transport models linked to the shallow water equations, J. Comput. Phys., 231, 3317-3339 (2012) · Zbl 1402.76077
[27] Cercignani, C., The Boltzmann Equation and Its Applications, Appl. Math. Sci., vol. 67 (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0646.76001
[28] Chalons, C.; Coquel, F.; Godlewski, E.; Raviart, P.-A.; Seguin, N., Godunov-type schemes for hyperbolic systems with parameter dependent source. The case of Euler system with friction, Math. Models Methods Appl. Sci., 20, 2109-2166 (2010) · Zbl 1213.35034
[29] Chen, G. Q.; Levermore, C. D.; Liu, T. P., Hyperbolic conservation laws with stiff-relaxation terms and entropy, Commun. Pure Appl. Math., 47, 787-830 (1995) · Zbl 0806.35112
[30] Coquel, F.; Perthame, B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal., 35, 2223-2249 (1998) · Zbl 0960.76051
[31] Crispel, P.; Degond, P.; Vignal, M.-H., An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit, J. Comput. Phys., 223, 208-234 (2007) · Zbl 1163.76062
[32] Degond, P.; Deluzet, F.; Sangam, A.; Vignal, M.-H., A numerical scheme for a viscous shallow water model with friction, J. Comput. Phys., 228, 3540-3558 (2009) · Zbl 1396.76067
[33] Delestre, O.; Marche, F., A numerical scheme for a viscous shallow water model with friction, J. Sci. Comput., 48, 41-51 (2011) · Zbl 1426.76355
[34] Delis, A. I.; Kampanis, N. A., Numerical flood simulation by depth averaged free surface flow models, (Environmental Systems - Encyclopedia of Life Support Systems (EOLSS) (2009))
[35] Dubroca, B.; Feugeas, J.-L., Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris, 329, 915-920 (1999) · Zbl 0940.65157
[36] Duran, A.; Marche, F.; Liang, Q., On the well-balanced numerical discretization of shallow water equations on unstructured meshes, J. Comput. Phys., 235, 565-586 (2013) · Zbl 1291.76215
[37] Dutykh, D.; Poncet, R.; Dias, F., The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation, Eur. J. Mech. B, Fluids, 30, 598-615 (2011) · Zbl 1258.76036
[38] Ern, A.; Piperno, S.; Djadel, K., A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying, Int. J. Numer. Methods Fluids, 58, 1-25 (2008) · Zbl 1142.76036
[39] Franck, E., Construction et analyse numérique de schémas “asymptotic preserving” sur maillages non structurés. Application à l’équation de transport et aux systèmes de Friedrichs (2012), PhD thesis
[40] Gallardo, J. M.; Parés, C.; Castro, M., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys., 227, 574-601 (2007) · Zbl 1126.76036
[41] Gosse, L.; Toscani, G., An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Acad. Sci. Paris, 334, 337-342 (2002) · Zbl 0996.65093
[42] Gosse, L.; Toscani, G., Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., 41, 641-658 (2003) · Zbl 1130.82340
[43] Greenberg, J. M.; Leroux, A. Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1-16 (1996) · Zbl 0876.65064
[44] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21, 441-454 (1999) · Zbl 0947.82008
[45] Jin, S., A steady-state capturing method for hyperbolic systems with geometrical source terms, Modél. Math. Anal. Numér., 35, 631-645 (2001) · Zbl 1001.35083
[46] Jin, S.; Levermore, D., Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 126, 449-467 (1996) · Zbl 0860.65089
[47] Katsaounis, T.; Perthame, B.; Simeoni, C., Upwinding sources at interfaces in conservation laws, Appl. Math. Lett., 17, 309-316 (2004) · Zbl 1061.65080
[48] Kesserwani, G.; Liang, Q., A discontinuous Galerkin algorithm for the two-dimensional shallow water equations, Comput. Methods Appl. Mech. Eng., 199, 3356-3368 (2010) · Zbl 1225.76197
[49] Kesserwani, G.; Liang, Q., Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying, Comput. Fluids, 39, 2040-2050 (2010) · Zbl 1245.76068
[50] Kesserwani, G.; Liang, Q., Locally limited and fully conserved RKDG2 shallow water solutions with wetting and drying, J. Sci. Comput., 50, 120-144 (2012) · Zbl 1426.76387
[51] Kurganov, A.; Levy, D., Central-upwind schemes for the Saint-Venant system, Math. Model. Numer. Anal., 36, 397-425 (2002) · Zbl 1137.65398
[52] Kurganov, A.; Petrova, G., A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5, 133-160 (2007) · Zbl 1226.76008
[53] Liang, Q.; Marche, F., Numerical resolution of well-balanced shallow water equations with complex source terms, Adv. Water Resour., 32, 873-884 (2009)
[54] Lions, P. L.; Toscani, G., Diffusive limit for finite velocity Boltzmann kinetic models, Rev. Mat. Iberoam., 13, 473-513 (1997) · Zbl 0896.35109
[55] Lukacova-Medvidova, M.; Noelle, S.; Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J. Comput. Phys., 1, 122-147 (2007) · Zbl 1123.76041
[56] Marcati, P.; Milani, A., The one-dimensional Darcy’s law as the limit of a compressible Euler flow, J. Differ. Equ., 84, 129-146 (1990) · Zbl 0715.35065
[57] Marche, F.; Bonneton, P.; Fabrie, P.; Seguin, N., Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes, Int. J. Numer. Methods Fluids, 53, 867-894 (2007) · Zbl 1229.76063
[58] Nikolos, I. K.; Delis, A. I., An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput. Methods Appl. Mech. Eng., 198, 3723-3750 (2009) · Zbl 1230.76035
[59] Noelle, S.; Pankratz, N.; Puppo, G.; Natvig, J. R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213, 474-499 (2006) · Zbl 1088.76037
[60] Perthame, B.; Simeoni, C., A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38, 201-231 (2001) · Zbl 1008.65066
[61] Ricchiuto, M.; Bollermann, A., Stabilized residual distribution for shallow water simulations, J. Comput. Phys., 228, 1071-1115 (2009) · Zbl 1330.76097
[62] Sampson, J.; Easton, A.; Singh, M., Moving boundary shallow water flow above parabolic bottom topography, EMAC 2005. EMAC 2005, ANZIAM J., 21, 373-387 (2006)
[63] Wang, Y.; Liang, Q.; Kesserwani, G.; Hall, J. W., A 2D shallow flow model for practical dam-break simulations, J. Hydraul. Res., 49, 307-316 (2011)
[64] Xing, Y.; Shu, C.-W., High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys., 208, 206-227 (2005) · Zbl 1114.76340
[65] Xing, Y.; Shu, C.-W., A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Commun. Comput. Phys., 1, 100-134 (2006) · Zbl 1115.65096
[66] Xing, Y.; Zhang, X., Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes, J. Sci. Comput., 57, 19-41 (2013) · Zbl 1282.76134
[67] Zhou, J. G.; Causon, D. M.; Mingham, C. G., The surface gradient method for the treatment of source terms in the shallow-water equations, J. Comput. Phys., 168, 1-25 (2001) · Zbl 1074.86500
[68] Sampson, J.; Easton, A.; Singh, M., Moving boundary shallow water flow in circular paraboloidal basins, (Proceedings of the Sixth Engineering Mathematics and Applications Conference, 5th International Congress on Industrial and Applied Mathematics (2003)), 223-227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.