×

Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. (English) Zbl 1440.35056

Summary: It is considered a saturable system of coupled Schrödinger equations with asymptotically linear nonlinearities. The bound states (solutions with finite energy) are proved to exist and have a concentration behavior under hypotheses involving the coupling and saturation parameters. The proof is based on variational methods.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J47 Second-order elliptic systems
35Q55 NLS equations (nonlinear Schrödinger equations)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ackermann, N.; Chagoya, J., Ground states for irregular and indefinite superlinear Schrödinger equations, J. Differential Equations, 261, 5180-5201 (2016) · Zbl 1347.35114
[2] Alves, C. O.; Soares, S. H.M., Existence and concentration of positive solutions for a class of gradient systems, NoDEA Nonlinear Differential Equations Appl., 12, 437-457 (2005) · Zbl 1146.35345
[3] Alves, C. O.; Souto, M. A.S., Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254, 1977-1991 (2013) · Zbl 1263.35076
[4] Ambrosetti, A., Mathematical analysis-systems of nonlinear Schrödinger equations. A survey, Atti Accad. Naz. Lincei, Rend. Lincei Mat. Appl., 20, 99-110 (2009) · Zbl 1167.35362
[5] Ambrosetti, A.; Cerami, G.; Ruiz, D., Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn, J. Funct. Anal., 254, 2816-2845 (2008) · Zbl 1148.35080
[6] Ambrosetti, A.; Felli, V.; Malchiodi, A., Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7, 117-144 (2005) · Zbl 1064.35175
[7] Ambrosetti, A.; Malchiodi, A., Perturbation Methods and Semilinear Elliptic Problems on \(\mathbb{R}^N (2006)\), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1115.35004
[8] Ambrosetti, A.; Malchiodi, A., Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives, (Perspectives in Nonlinear Partial Differential Equations. Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., 446 (2007), Amer. Math. Soc.), 19-30 · Zbl 1200.35106
[9] Ambrosetti, A.; Malchiodi, A.; Ni, W.-M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I, Comm. Math. Phys., 235, 427-466 (2003) · Zbl 1072.35019
[10] Ambrosetti, A.; Malchiodi, A.; Ruiz, D., Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 98, 317-348 (2006) · Zbl 1142.35082
[11] Ambrosetti, A.; Ruiz, D., Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A, 136, 889-907 (2006) · Zbl 1126.35059
[12] Ambrosetti, A.; Wang, Z.-Q., Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations, 18, 1321-1332 (2016) · Zbl 1210.35087
[13] Bartolo, P.; Benci, V.; Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7, 981-1012 (1983) · Zbl 0522.58012
[14] Bonheure, D.; Grumiau, C.; Troestler, C., Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, Nonlinear Anal., 147, 236-273 (2016) · Zbl 1354.35041
[15] Bonheure, D.; Mercuri, C., Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials, J. Differential Equations, 251, 1056-1085 (2011) · Zbl 1223.35130
[16] Bonheure, D.; Van Schaftingen, J., Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris, 342, 903-908 (2006) · Zbl 1099.35127
[17] Brezis, H.; Lieb, E. H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[18] Brezis, H.; Lieb, E. H., Minimum action solutions of some vector field equations, Comm. Math. Phys., 96, 97-113 (1984) · Zbl 0579.35025
[19] Busca, J.; Sirakov, B., Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163, 41-56 (2000) · Zbl 0952.35033
[20] Byeon, J.; Kwon, O.; Oshita, Y., Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 14, 825-842 (2015) · Zbl 1314.58011
[21] Byeon, J.; Wang, Z.-Q., Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials, J. Eur. Math. Soc., 8, 217-228 (2006) · Zbl 1245.35036
[22] Costa, D. G.; Magalhães, C. A., Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23, 1401-1412 (1994) · Zbl 0820.35059
[23] Costa, D. G.; Tehrani, H., On a class of asymptotically linear elliptic problems in \(\mathbb{R}^N\), J. Differential Equations, 173, 470-494 (2001) · Zbl 1098.35526
[24] D’Aprile, T., Solutions with many mixed positive and negative interior spikes for a semilinear Neumann problem, Calc. Var. Partial Differential Equations, 41, 435-454 (2011) · Zbl 1218.35024
[25] Dávila, J.; Pistoia, A.; Vaira, G., Bubbling solutions for supercritical problems on manifolds, J. Math. Pures Appl., 103, 1410-1440 (2015) · Zbl 1347.58004
[26] Deng, S.; Musso, M.; Pistoia, A., Concentration on minimal submanifolds for a Yamabe-type problem, Comm. Partial Differential Equations, 41, 1379-1425 (2016) · Zbl 1355.58006
[27] Ding, Y.; Lee, C.; Zhao, F., Semiclassical limits of ground state solutions to Schrödinger systems, Calc. Var. Partial Differential Equations, 51, 725-760 (2014) · Zbl 1310.35104
[28] Ding, Y.; Wei, J., Multiplicity of semiclassical solutions to nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 19, 987-1010 (2017) · Zbl 1364.35330
[29] Ekeland, I., Convexity Methods in Hamiltonian Mechanics (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0707.70003
[30] Felmer, P. L.; Martínez, S., Thick clusters for the radially symmetric nonlinear Schrödinger equation, Calc. Var. Partial Differential Equations, 31, 231-261 (2008) · Zbl 1138.35084
[31] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[32] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 1042.35002
[33] Ikoma, N.; Tanaka, K., A local mountain pass type result for a system of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 40, 449-480 (2011) · Zbl 1215.35061
[34] Jeanjean, L.; Tanaka, K., A remark on least energy solutions in \(\mathbb{R}^N\), Proc. Amer. Math. Soc., 131, 2399-2408 (2003) · Zbl 1094.35049
[35] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21, 287-318 (2004) · Zbl 1060.35012
[36] Kavian, O., Introduction à la Théorie Des Points Critiques Et Applications Aux Problèmes Elliptiques (1993), Springer-Verlag: Springer-Verlag Paris · Zbl 0797.58005
[37] Kwon, O., Existence of standing waves of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Math. Anal. Appl., 387, 920-930 (2012) · Zbl 1273.35252
[38] Lehrer, R., Existence of solution for asymptotically linear systems in \(\mathbb{R}^N\), Electron. J. Differential Equations, 236, 20 (2013)
[39] Lehrer, R.; Maia, L., Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266, 213-246 (2014) · Zbl 1305.35034
[40] Li, K.; Zhang, Z., Existence of solutions for a Schrödinger system with linear and nonlinear couplings, J. Math. Phys., 57, 17 (2016)
[41] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223-283 (1984) · Zbl 0704.49004
[42] Mahmoudi, F.; Malchiodi, A., Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math., 209, 460-525 (2007) · Zbl 1160.35011
[43] Maia, L.; Montefusco, E.; Pellacci, B., Weakly coupled nonlinear Schrödinger systems: the saturation effect, Calc. Var. Partial Differential Equations, 46, 325-351 (2013) · Zbl 1257.35171
[44] Maia, L.; Montefusco, E.; Pellacci, B., Singularly perturbed elliptic problems with nonautonomous asymptotically linear nonlinearities, Nonlinear Anal., 116, 193-209 (2015) · Zbl 1310.35119
[45] Maia, L.; Ruviaro, R., Sign-changing solutions for a Schrödinger equation with saturable nonlinearity, Milan J. Math., 79, 259-271 (2011) · Zbl 1229.35271
[46] Malchiodi, A., Solutions concentrating at curves for some singularly perturbed elliptic problems, C. R. Math. Acad. Sci. Paris, 338, 775-780 (2004) · Zbl 1081.35044
[47] Malchiodi, A., Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal., 15, 1162-1222 (2005) · Zbl 1087.35010
[48] Malchiodi, A.; Montenegro, M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 55, 1507-1568 (2002) · Zbl 1124.35305
[49] Malchiodi, A.; Montenegro, M., Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124, 105-143 (2004) · Zbl 1065.35037
[50] Musso, M.; Yang, J., Curve-like concentration layers for a singularly perturbed nonlinear problem with critical exponents, Comm. Partial Differential Equations, 39, 1048-1103 (2014) · Zbl 1301.35040
[51] Oh, Y.-G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \(( V )_a\), Comm. Partial Differential Equations, 13, 1499-1519 (1988) · Zbl 0702.35228
[52] Oh, Y.-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131, 223-253 (1990) · Zbl 0753.35097
[53] del Pino, M.; Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4, 121-137 (1996) · Zbl 0844.35032
[54] del Pino, M.; Pistoia, A.; Vaira, G., Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differential Equations, 261, 3414-3462 (2016) · Zbl 1345.35039
[55] Pistoia, A.; Ramos, M., Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, J. Differential Equations, 201, 160-176 (2004) · Zbl 1246.35089
[56] Pistoia, A.; Ramos, M., Locating the peaks of the least energy solutions to an elliptic system with Dirichlet boundary conditions, NoDEA Nonlinear Differential Equations Appl., 15, 1-23 (2008) · Zbl 1143.35319
[57] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087
[58] Ramos, M.; Tavares, H., Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations, 31, 1-25 (2008) · Zbl 1143.35027
[59] Ramos, M.; Yang, J., Spike-layered solutions for an elliptic system with Neumann boundary conditions, Trans. Amer. Math. Soc., 357, 3265-3284 (2005) · Zbl 1136.35046
[60] Santra, S.; Wei, J., On a singular perturbed problem in an annulus, Ann. Sc. Norm. Super. Pisa Cl. Sci., 15, 837-857 (2016) · Zbl 1347.35024
[61] Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, 511-517 (1984) · Zbl 0535.35025
[62] Stuart, C. A.; Zhou, H. S., Applying the mountain pass theorem to an asymptotically linear elliptic equation on \(\mathbb{R}^N\), Comm. Partial Differential Equations, 24, 1731-1758 (1999) · Zbl 0935.35043
[63] Tian, R.; Zhang, Z., Existence and bifurcation of solutions for a double coupled system of Schrödinger equations, Sci. China Math., 58, 1607-1620 (2015) · Zbl 1326.35133
[64] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153, 229-244 (1993) · Zbl 0795.35118
[65] Wang, X.; Zeng, B., On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28, 633-655 (1997) · Zbl 0879.35053
[66] Wang, Z.; Zhou, H.-S., Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential, J. Math. Phys., 52, 13 (2011) · Zbl 1272.35182
[67] Willem, M., Minimax Theorems (1996), Birkhäuser: Birkhäuser Boston · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.