×

Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. (English) Zbl 1134.74375

Summary: The differential equations governing transfer and stiffness matrices and acoustic impedance for a functionally graded generally anisotropic magneto-electro-elastic medium have been obtained. It is shown that the transfer matrix satisfies a linear 1st order matrix differential equation, while the stiffness matrix satisfies a nonlinear Riccati equation. For a thin nonhomogeneous layer, approximate solutions with different levels of accuracy have been formulated in the form of a transfer matrix using a geometrical integration in the form of a Magnus expansion. This integration method preserves qualitative features of the exact solution of the differential equation, in particular energy conservation. The wave propagation solution for a thick layer or a multilayered structure of inhomogeneous layers is obtained recursively from the thin layer solutions. Since the transfer matrix solution becomes computationally unstable with increase of frequency or layer thickness, we reformulate the solution in the form of a stable stiffness-matrix solution which is obtained from the relation of the stiffness matrices to the transfer matrices. Using an efficient recursive algorithm, the stiffness matrices of the thin nonhomogeneous layer are combined to obtain the total stiffness matrix for an arbitrary functionally graded multilayered system. It is shown that the round-off error for the stiffness-matrix recursive algorithm is higher than that for the transfer matrices. To optimize the recursive procedure, a computationally stable hybrid method is proposed which first starts the recursive computation with the transfer matrices and then, as the thickness increases, transits to the stiffness matrix recursive algorithm. Numerical results show this solution to be stable and efficient. As an application example, we calculate the surface wave velocity dispersion for a functionally graded coating on a semispace.

MSC:

74J10 Bulk waves in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adler, E. L., Matrix methods applied to acoustic waves in multilayers, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control, 37, 485-490 (1990)
[2] Aki, K., Richards, P.G., 1980. Quantitative Seismology, Vol. 1. W.H. Freeman and Company, New York.; Aki, K., Richards, P.G., 1980. Quantitative Seismology, Vol. 1. W.H. Freeman and Company, New York.
[3] Baltazar, A.; Rokhlin, S. I.; Pecorari, C., On the relationship between ultrasonic and micro-mechanic properties of contacting rough surfaces, J. Mech. Phys. Solid, 50, 1397-1416 (2002) · Zbl 1071.74663
[4] Bellman, R.; Vasudevan, R., Wave Propagation: An Invariant Imbedding Approach (1986), Kluwer Academic: Kluwer Academic Boston · Zbl 0645.65054
[5] Baltazar, A.; Wang, L.; Xie, B.; Rokhlin, S. I., Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids, J. Acoust. Soc. Amer, 114, 1424-1434 (2003)
[6] Benveniste, Y., Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases, Phys. Rev. B, 51, 16424-16427 (1995)
[7] Biryukov, S. V.; Gulyaev, Y. V.; Krylov, V. V.; Plessky, V. P., Surface Acoustic Waves in Inhomogeneous Media (1995), Springer: Springer New York · Zbl 0823.73002
[8] Blanes, S.; Casas, F., Optimization of Lie group methods for differential equations, Future Gener. Comput. Syst, 19, 331-339 (2003)
[9] Blanes, S.; Casas, F.; Ros, J., Improved high order integrators based on Magnus expansion, BIT, 40, 434-450 (2000) · Zbl 0962.65102
[10] Blanes, S.; Casas, F.; Ros, J., High order optimized geometric integrators for linear differential equations, BIT, 42, 1-24 (2002) · Zbl 1008.65045
[11] Brekhovskikh, L. M., Waves in Layered Media (1980), Academic Press: Academic Press New York · Zbl 0558.73018
[12] Budd, C. J.; Iserles, A., Geometric integrationnumerical solution of differential equations on manifolds, Philos. Trans. Roy. Soc. London A, 357, 945-956 (1999) · Zbl 0933.65142
[13] Caviglia, G.; Morro, A., Riccati equations for wave propagation in planarly-stratified solids, European J. Mech. A/Solids, 19, 721-741 (2000) · Zbl 0968.74037
[14] Caviglia, G.; Morro, A., Wave reflection and transmission from anisotropic layers through Riccati equations, Quart. J. Mech. Appl. Math, 55, 93-107 (2002) · Zbl 1115.74334
[15] Chapman, C. H., Exact and approximate generalized wave theory in vertically homogeneous media, J. Roy. Astr. Soc, 46, 201-236 (1976) · Zbl 0337.73081
[16] Chin, R. C.Y.; Hedstrom, G. W.; Thigpen, L., Matrix methods in synthetic seismograms, Geophys. J. Astr. Soc, 77, 483-502 (1984) · Zbl 0575.73108
[17] Datta, S.K., 2000. In: Chou, T.W. (Ed.), Comprehensive Composite Materials, Vol. 1, Elsevier, Amsterdam, 511-558 (Chapter 1.18).; Datta, S.K., 2000. In: Chou, T.W. (Ed.), Comprehensive Composite Materials, Vol. 1, Elsevier, Amsterdam, 511-558 (Chapter 1.18).
[18] Fahmy, A. H.; Adler, E. L., Propagation of acoustic waves in multilayersa matrix description, Appl. Phys. Lett, 20, 495-497 (1973)
[19] Fryer, G. J.; Frazer, L. N., Seismic waves in stratified anisotropic media, Geophys. J. Roy. Astr. Soc, 78, 691-710 (1984) · Zbl 0556.73092
[20] Glorieux, C.; Gao, W.; Kruger, S. E.; Rostyne, K. V.; Lauriks, W.; Thoen, J., Surface acoustic wave depth profiling of elastically inhomogeneous materials, J. Appl. Phys, 88, 4394-4400 (2000)
[21] Hager, W. W.; Rostamian, R., Reflection and refraction of elastic waves for stratified materials, Wave motion, 10, 333-348 (1988) · Zbl 0662.73024
[22] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal, 34, 1911-1925 (1997) · Zbl 0888.65032
[23] Hosten, B.; Castaings, M., Surface impedance matrices to model the propagation in multilayered media, Ultrasonics, 41, 501-507 (2003)
[24] Ingebrigsten, K. A.; Tonning, A., Elastic surface waves in crystal, Phys. Rev, 184, 942-951 (1969)
[25] Iserles, A., On Cayley-transform methods for discretization of Lie-group equations, Found. Comput. Math, 1, 129-160 (2001) · Zbl 1014.65060
[26] Iserles, A., On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT, 42, 561-599 (2002) · Zbl 1027.65107
[27] Iserles, A., Munthe-Kaas, H.Z., \(Nø\); Iserles, A., Munthe-Kaas, H.Z., \(Nø\) · Zbl 1064.65147
[28] Iserles, A.; Nørsett, S. P., On the solution of linear differential equations in Lie groups, Philos. Trans. Roy. Soc. A, 357, 983-1019 (1999) · Zbl 0958.65080
[29] Kausel, E., Wave propagation in anisotropic layered media, Internat. J. Numer. Methods Engng, 23, 1567-1578 (1986) · Zbl 0593.73097
[30] Kausel, E., Thin-layer methodformulation in the time domain, Internat. J. Numer. Methods Engng, 37, 927-941 (1994) · Zbl 0801.73078
[31] Kennett, B. L., Seismic Wave Propagation in Stratified Media (1983), Cambridge University Press: Cambridge University Press New York
[32] Lefebvre, J. E.; Zhang, V.; Gazalet, J.; Gryba, T.; Sadaune, V., Acoustic wave propagation in continuous functionally graded platesan extension of the Legendre polynomial approach, IEEE Tran. Ultrasonics Ferroelectrics Frequency Control, 48, 1332-1340 (2001)
[33] Liu, G. R.; Han, X.; Lam, K. Y., Stress waves in functionally gradient materials and its use for material characterization, Composite Part B, 30, 383-394 (1999)
[34] Liu, G. R.; Xi, Z. C., Elastic Waves in Anisotropic Laminates (2001), CRC Press: CRC Press Boca Raton, FL
[35] Magnus, W., On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math, 7, 649-673 (1954) · Zbl 0056.34102
[36] Menahem, A. B.; Singh, S. J., Seismic Waves and Sources (1981), Springer: Springer New York · Zbl 0484.73089
[37] Moler, C.; van Loan, C. V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev, 45, 3-49 (2003) · Zbl 1030.65029
[38] Nan, C. W., Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, 50, 6082-6088 (1994)
[39] Nayfeh, A. H., Wave Propagation in Layered Anisotropic Media (1995), North-Holland: North-Holland New York · Zbl 0857.73005
[40] Ohira, K., Yanaka, M., Tsukahara, Y., Ueha, S., 1992. Evaluation of elasticity variation in functionally gradient materials. IEEE Ultrasonics Symposium 751-755.; Ohira, K., Yanaka, M., Tsukahara, Y., Ueha, S., 1992. Evaluation of elasticity variation in functionally gradient materials. IEEE Ultrasonics Symposium 751-755.
[41] Pan, E., Free vibrations of simply supported and multilayered magneto-electro-elastic plates, J. Sound Vibration, 252, 429-442 (2002)
[42] Rokhlin, S. I.; Huang, W., Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids. II. Second-order asymptotic boundary conditions, J. Acoust. Soc. Amer, 94, 3405-3420 (1993)
[43] Rokhlin, S. I.; Wang, L., Stable recursive algorithm for elastic wave propagation in layered anisotropic mediastiffness matrix method, J. Acoust. Soc. Amer, 112, 822-834 (2002)
[44] Stroh, A. N., Steady state problems in anisotropic elasticity, J. Math. Phys, 41, 77-103 (1962) · Zbl 0112.16804
[45] Suresh, S., Modeling and design of multi-layered and graded materials, Progr. Mater. Sci, 42, 243-251 (1997)
[46] Suresh, S.; Mortenson, A., Fundamentals of Functionally Graded Materials (1998), IOM Communications Ltd: IOM Communications Ltd London
[47] Ting, T. C.T., Anisotropic Elasticity: Theory and Applications (1996), Oxford University Press: Oxford University Press Oxford · Zbl 0871.73029
[48] Titchener, J. B.; Willis, J. R., The reflection of electromagnetic waves from stratified anisotropic media, IEEE Trans. Antennas Propagation, 39, 35-39 (1991)
[49] Wang, L.; Rokhlin, S. I., Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrasonics, 39, 407-418 (2001)
[50] Wang, L.; Rokhlin, S. I., Recursive stiffness matrix method for wave propagation in stratified media, Bull. Seismol. Soc. Amer, 92, 1129-1135 (2002)
[51] Wang, L.; Rokhlin, S. I., Recursive asymptotic stiffness matrix method for analysis of surface wave devices on layered piezoelectric media, Appl. Phys. Lett, 81, 4049-4052 (2002)
[52] Wang, L.; Rokhlin, S. I., A compliance/stiffness matrix formulation of general Green’s function and effective permittivity for piezoelectric multilayers, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control, 51, 453-463 (2004)
[53] Wang, L., Rokhlin, S.I., 2004b. Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method. IEEE Trans. Ultrasonic Ferroelectrics Frequency Control accepted.; Wang, L., Rokhlin, S.I., 2004b. Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method. IEEE Trans. Ultrasonic Ferroelectrics Frequency Control accepted.
[54] Wilkinson, J. H., Round off Errors in Algebraic Processes (1963), Prentice-Hall: Prentice-Hall NJ · Zbl 1041.65502
[55] Zanna, A.; Munthe-Kaas, H. Z., Generalized polar decompositions for the approximation of the matrix exponential, SIAM J. Matrix Anal. Appl, 23, 840-862 (2002) · Zbl 0999.65060
[56] Zhang, J. F.; Verschuur, D. J., Elastic wave propagation in heterogeneous anisotropic media using the lumped finite-element method, Geophysics, 67, 625-638 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.