×

Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders. (English) Zbl 1431.81156

Summary: We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop-tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.

MSC:

81U05 \(2\)-body potential quantum scattering theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81V05 Strong interaction, including quantum chromodynamics
81T50 Anomalies in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[2] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE]. · Zbl 1434.81135
[3] Cutkosky, Re, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys., 1, 429 (1960) · Zbl 0122.22605 · doi:10.1063/1.1703676
[4] Mandelstam, S., Unitarity condition below physical thresholds in the normal and anomalous cases, Phys. Rev. Lett., 4, 84 (1960) · Zbl 0089.21603 · doi:10.1103/PhysRevLett.4.84
[5] Landau, Ld, On analytic properties of vertex parts in quantum field theory, Nucl. Phys., 13, 181 (1959) · Zbl 0088.22004 · doi:10.1016/0029-5582(59)90154-3
[6] Cutkosky, Re, Anomalous thresholds, Rev. Mod. Phys., 33, 448 (1961) · Zbl 0108.42506 · doi:10.1103/RevModPhys.33.448
[7] Coleman, S.; Norton, Re, Singularities in the physical region, Nuovo Cim., 38, 438 (1965) · doi:10.1007/BF02750472
[8] Kershaw, D., Algebraic factorization of scattering amplitudes at physical Landau singularities, Phys. Rev., D 5, 1976 (1972)
[9] Deshpande, Ng; Margolis, B.; Trottier, Hd, Gluon mediated rare decays of the top quark: Anomalous threshold and its phenomenological consequences, Phys. Rev., D 45, 178 (1992)
[10] A. Frink, J.G. Korner and J.B. Tausk, Massive two loop integrals and Higgs physics, hep-ph/9709490 [INSPIRE].
[11] Goria, S.; Passarino, G., Anomalous threshold as the pivot of Feynman amplitudes, Nucl. Phys. Proc. Suppl., 183, 320 (2008) · doi:10.1016/j.nuclphysbps.2008.09.124
[12] Dennen, T., Landau singularities from the amplituhedron, JHEP, 06, 152 (2017) · Zbl 1380.81397 · doi:10.1007/JHEP06(2017)152
[13] Chin, P.; Tomboulis, Et, Nonlocal vertices and analyticity: Landau equations and general Cutkosky rule, JHEP, 06, 014 (2018) · Zbl 1395.83105 · doi:10.1007/JHEP06(2018)014
[14] G. Passarino, Peaks and cusps: anomalous thresholds and LHC physics, arXiv:1807.00503 [INSPIRE].
[15] C. Gómez and R. Letschka, Masses and electric charges: gauge anomalies and anomalous thresholds, arXiv:1903.01311 [INSPIRE]. · Zbl 1383.83056
[16] Catani, S., From loops to trees by-passing Feynman’s theorem, JHEP, 09, 065 (2008) · Zbl 1245.81117 · doi:10.1088/1126-6708/2008/09/065
[17] Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G., A tree-loop duality relation at two loops and beyond, JHEP, 10, 073 (2010) · Zbl 1291.81381 · doi:10.1007/JHEP10(2010)073
[18] Bierenbaum, I., Tree-loop duality relation beyond simple poles, JHEP, 03, 025 (2013) · doi:10.1007/JHEP03(2013)025
[19] Buchta, S., On the singular behaviour of scattering amplitudes in quantum field theory, JHEP, 11, 014 (2014) · Zbl 1333.81149 · doi:10.1007/JHEP11(2014)014
[20] Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G., Numerical implementation of the loop-tree duality method, Eur. Phys. J., C 77, 274 (2017) · doi:10.1140/epjc/s10052-017-4833-6
[21] Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, Gfr, Universal dual amplitudes and asymptotic expansions for gg → H and H → γγ in four dimensions, Eur. Phys. J., C 78, 231 (2018) · doi:10.1140/epjc/s10052-018-5692-5
[22] Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, Gfr; Torres Bobadilla, Wj, Universal four-dimensional representation of H → γγ at two loops through the Loop-Tree Duality, JHEP, 02, 143 (2019) · doi:10.1007/JHEP02(2019)143
[23] Baadsgaard, C., New representations of the perturbative S-matrix, Phys. Rev. Lett., 116, 061601 (2016) · Zbl 1356.81208 · doi:10.1103/PhysRevLett.116.061601
[24] Caron-Huot, S., Loops and trees, JHEP, 05, 080 (2011) · Zbl 1296.81128 · doi:10.1007/JHEP05(2011)080
[25] Hernandez-Pinto, Rj; Sborlini, Gfr; Rodrigo, G., Towards gauge theories in four dimensions, JHEP, 02, 044 (2016) · Zbl 1388.81329 · doi:10.1007/JHEP02(2016)044
[26] Sborlini, Gfr; Driencourt-Mangin, F.; Hernandez-Pinto, R.; Rodrigo, G., Four-dimensional unsubtraction from the loop-tree duality, JHEP, 08, 160 (2016) · doi:10.1007/JHEP08(2016)160
[27] Sborlini, Gfr; Driencourt-Mangin, F.; Rodrigo, G., Four-dimensional unsubtraction with massive particles, JHEP, 10, 162 (2016) · doi:10.1007/JHEP10(2016)162
[28] Tomboulis, Et, Causality and unitarity via the tree-loop duality relation, JHEP, 05, 148 (2017) · Zbl 1396.81184 · doi:10.1007/JHEP05(2017)148
[29] Feynman, Rp, Quantum theory of gravitation, Acta Phys. Polon., 24, 697 (1963)
[30] R. Runkel, Z. Szor, J.P. Vesga and S. Weinzierl, Causality and loop-tree duality at higher loops, Phys. Rev. Lett.122 (2019) 111603 [Erratum ibid.123 (2019) 059902] [arXiv:1902.02135] [INSPIRE].
[31] Capatti, Z.; Hirschi, V.; Kermanschah, D.; Ruijl, B., Loop-tree duality for multiloop numerical integration, Phys. Rev. Lett., 123, 151602 (2019) · doi:10.1103/PhysRevLett.123.151602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.