×

Stability of three-dimensional Gaussian vortices in an unbounded, rotating, vertically stratified, Boussinesq flow: linear analysis. (English) Zbl 1374.76041

Summary: The linear stability of three-dimensional vortices in rotating, stratified flows has been studied by analysing the non-hydrostatic inviscid Boussinesq equations. We have focused on a widely used model of geophysical and astrophysical vortices, which assumes an axisymmetric Gaussian structure for pressure anomalies in the horizontal and vertical directions. For a range of Rossby numbers (\(-0.5<Ro<0.5\)) and Burger numbers (\(0.02<Bu<2.3\)) relevant to observed long-lived vortices, the growth rate and spatial structure of the most unstable eigenmodes have been numerically calculated and presented as a function of \(Ro\)-\(Bu\). We have found neutrally stable vortices only over a small region of the \(Ro\)-\(Bu\) parameter space: cyclones with \(Ro\sim 0.02{-}0.05\) and \(Bu\sim 0.85{-}0.95\). However, we have also found that anticyclones in general have slower growth rates compared to cyclones. In particular, the growth rate of the most unstable eigenmode for anticyclones in a large region of the parameter space (e.g. \(Ro<0\) and \(0.5\lesssim Bu\lesssim 1.3\)) is slower than 50 turnaround times of the vortex (which often corresponds to several years for ocean eddies). For cyclones, the region with such slow growth rates is confined to \(0<Ro<0.1\) and \(0.5\lesssim Bu\lesssim 1.3\). While most calculations have been done for \(f/\bar{N}=0.1\) (where \(f\) and \(\bar{N}\) are the Coriolis and background Brunt-Väisälä frequencies), we have numerically verified and explained analytically, using non-dimensionalized equations, the insensitivity of the results to reducing \(f/\bar{N}\) to the more ocean-relevant value of 0.01. The results of our stability analysis of Gaussian vortices both support and contradict the findings of earlier studies with QG or multilayer models or with other families of vortices. The results of this paper provide a stepping stone to study the more complicated problems of the stability of geophysical (e.g. those in the atmospheres of giant planets) and astrophysical vortices (in accretion disks).

MSC:

76B47 Vortex flows for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
76U05 General theory of rotating fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Armi, L.; Hebert, D.; Oakey, N.; Price, J.; Richardson, P. L.; Rossby, T.; Ruddick, B., The history and decay of a Mediterranean salt lens, Nature, 333, 649-651, (1988) · doi:10.1038/333649a0
[2] Armi, L.; Hebert, D.; Oakey, N.; Price, J. F.; Richardson, P. L.; Rossby, H. T.; Ruddick, B., Two years in the life of a Mediterranean salt lens, J. Phys. Oceanogr., 19, 354-370, (1989) · doi:10.1175/1520-0485(1989)019<0354:TYITLO>2.0.CO;2
[3] Aubert, O.; Le Bars, M.; Le Gal, P.; Marcus, P. S., The universal aspect ratio of vortices in rotating stratfied flows: experiments and observations, J. Fluid Mech., 706, 34-45, (2012) · Zbl 1275.76212 · doi:10.1017/jfm.2012.176
[4] Baey, J.-M.; Carton, X., Vortex multipoles in two-layer rotating shallow-water flows, J. Fluid Mech., 460, 151-175, (2002) · Zbl 1005.76028 · doi:10.1017/S0022112002008170
[5] Barcilon, V.; Pedlosky, J., On the steady motions produced by a stable stratification in a rapidly rotating fluid, J. Fluid Mech., 29, 673-690, (1967) · Zbl 0147.45606 · doi:10.1017/S0022112067001119
[6] Barge, P.; Sommeria, J., Did planet formation begin inside persistent gaseous vortices?, Astron. Astrophys., 295, L1-L4, (1995)
[7] Barranco, J. A.; Marcus, P. S., Three-dimensional vortices in stratified protoplanetary disks, Astrophys. J., 623, 1157-1170, (2005) · doi:10.1086/428639
[8] Barranco, J. A.; Marcus, P. S., A 3D spectral anelastic hydrodynamic code for shearing, stratified flows, J. Comput. Phys., 219, 21-46, (2006) · Zbl 1137.76446 · doi:10.1016/j.jcp.2006.03.015
[9] Bashmachnikov, I.; Neves, F.; Calheiros, T.; Carton, X., Properties and pathways of Mediterranean water eddies in the Atlantic, Prog. Oceanogr., 137, 149-172, (2015) · doi:10.1016/j.pocean.2015.06.001
[10] Benilov, E. S., Instability of quasi-geostrophic vortices in a two-layer ocean with a thin upper layer, J. Fluid Mech., 475, 303-331, (2003) · Zbl 1135.76327 · doi:10.1017/S0022112002002823
[11] Benilov, E. S., Stability of vortices in a two-layer ocean with uniform potential vorticity in the lower layer, J. Fluid Mech., 502, 207-232, (2004) · Zbl 1134.76345 · doi:10.1017/S0022112003007547
[12] Benilov, E. S., The effect of ageostrophy on the stability of thin oceanic vortices, Dyn. Atmos. Oceans, 39, 211-226, (2005) · doi:10.1016/j.dynatmoce.2005.01.001
[13] Benilov, E. S., On the stability of oceanic vortices: A solution to the problem?, Dyn. Atmos. Oceans, 40, 133-149, (2005) · doi:10.1016/j.dynatmoce.2004.10.017
[14] Benilov, E. S.; Broutman, D.; Kuznetsova, E. P., On the stability of large-amplitude vortices in a continuously stratified fluid on the f-plane, J. Fluid Mech., 355, 139-162, (1998) · Zbl 0901.76018 · doi:10.1017/S0022112097007581
[15] Benilov, E. S.; Flanagan, J. D., The effect of ageostrophy on the stability of vortices in a two-layer ocean, Ocean Model., 23, 49-58, (2008) · doi:10.1016/j.ocemod.2008.03.004
[16] Billant, P.; Dritschel, D. G.; Chomaz, J.-M., Bending and twisting instabilities of columnar elliptical vortices in a rotating strongly stratified fluid, J. Fluid Mech., 561, 73-102, (2006) · Zbl 1157.76329 · doi:10.1017/S0022112006000516
[17] Brunner-Suzuki, A. E. G.; Sundermeyer, M. A.; Lelong, M. P., Vortex stability in a large-scale internal wave shear, J. Phys. Oceanogr., 42, 1668-1683, (2012) · doi:10.1175/JPO-D-11-0137.1
[18] Carton, X., Hydrodynamical modeling of oceanic vortices, Surv. Geophys., 22, 179-263, (2001) · doi:10.1023/A:1013779219578
[19] Carton, X. J. & Mcwilliams, J. C.1989Barotropic and baroclinic instabilities of axisymmetric vortices in a quasigeostrophic model. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (ed. Nihoul, J. C. J. & Jamart, B. M.), pp. 225-244. Elsevier. doi:10.1016/S0422-9894(08)70188-0
[20] Chang, K.-I.; Teague, W. J.; Lyu, S. J.; Perkins, H. T.; Lee, D.-K.; Watts, D. R.; Kim, Y.-B.; Mitchell, D. A.; Lee, C. M.; Kim, K., Circulation and currents in the southwestern East/Japan Sea: overview and review, Prog. Oceanogr., 61, 105-156, (2004) · doi:10.1016/j.pocean.2004.06.005
[21] Chelton, D. B.; Deszoeke, R. A.; Schlax, M. G., Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433-460, (1998) · doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
[22] Chelton, D. B.; Schlax, M. G.; Samelson, R. M., Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167-216, (2011) · doi:10.1016/j.pocean.2011.01.002
[23] Chelton, D. B.; Schlax, M. G.; Samelson, R. M.; De Szoeke, R. A., Global observations of large oceanic eddies, Geophys. Res. Lett., 34, (2007) · doi:10.1029/2007GL030812
[24] Cho, J. Y. K.; Polvani, L. M., The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets, Science, 273, 335-337, (1996) · doi:10.1126/science.273.5273.335
[25] D’Asaro, E.; Walker, S.; Baker, E., Structure of two hydrothermal megaplumes, J. Geophys. Res., 99, 20361-20373, (1994) · doi:10.1029/94JC01846
[26] Dewar, W. K.; Killworth, P. D., On the stability of oceanic rings, J. Phys. Oceanogr., 25, 1467-1487, (1995) · doi:10.1175/1520-0485(1995)025<1467:OTSOOR>2.0.CO;2
[27] Dewar, W. K.; Killworth, P. D.; Blundell, J. R., Primitive-equation instability of wide oceanic rings. Part II. Numerical studies of ring stability, J. Phys. Oceanogr., 29, 1744-1758, (1999) · doi:10.1175/1520-0485(1999)029<1744:PEIOWO>2.0.CO;2
[28] Dong, C.; Mcwilliams, J. C.; Liu, Y.; Chen, D., Global heat and salt transports by eddy movement, Nat. Commun., 5, 3294, (2014)
[29] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, (2004), Cambridge University Press · Zbl 1055.76001 · doi:10.1017/CBO9780511616938
[30] Dritschel, D. G.; Mckiver, W. J., Effect of Prandtl’s ratio on balance in geophysical turbulence, J. Fluid Mech., 777, 569-590, (2015) · doi:10.1017/jfm.2015.348
[31] Ertel, H., Ein neuer hydrodynamischer wirbelsatz, Meteorol. Z., 59, 277-281, (1942) · JFM 68.0588.01
[32] Flierl, G. R., On the instability of geostrophic vortices, J. Fluid Mech., 197, 349-388, (1988) · Zbl 0655.76040 · doi:10.1017/S0022112088003283
[33] Gascard, J.-C.; Watson, A. J.; Messias, M.-J.; Olsson, K. A.; Johannessen, T.; Simonsen, K., Long-lived vortices as a mode of deep ventilation in the Greenland Sea, Nature, 416, 525-527, (2002) · doi:10.1038/416525a
[34] Gent, P. R.; Mcwilliams, J. C., The instability of barotropic circular vortices, Geophys. Astro. Fluid, 35, 209-233, (1986) · Zbl 0616.76057 · doi:10.1080/03091928608245893
[35] Graves, L. P.; Mcwilliams, J. C.; Montgomery, M. T., Vortex evolution due to straining: a mechanism for dominance of strong, interior anticyclones, Geophys. Astro. Fluid, 100, 151-183, (2006) · Zbl 1206.76013 · doi:10.1080/03091920600792041
[36] Hassanzadeh, P.; Kuang, Z., Blocking variability: arctic amplification versus arctic oscillation, Geophys. Res. Lett., 42, 8586-8595, (2015) · doi:10.1002/2015GL065923
[37] Hassanzadeh, P.; Kuang, Z.; Farrell, B. F., Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM, Geophys. Res. Lett., 41, 5223-5232, (2014) · doi:10.1002/2014GL060764
[38] Hassanzadeh, P.; Marcus, P. S.; Le Gal, P., The universal aspect ratio of vortices in rotating stratified flows: theory and simulation, J. Fluid Mech., 706, 46-57, (2012) · Zbl 1275.76216 · doi:10.1017/jfm.2012.180
[39] Hebert, D.; Oakey, N.; Ruddick, B., Evolution of a mediterranean salt lens: scalar properties, J. Phys. Oceanogr., 20, 1468-1483, (1990) · doi:10.1175/1520-0485(1990)020<1468:EOAMSL>2.0.CO;2
[40] Van Heijst, G. J. F.; Clercx, H. J. H., Laboratory modeling of geophysical vortices, Annu. Rev. Fluid Mech., 41, 143-164, (2009) · Zbl 1157.76012 · doi:10.1146/annurev.fluid.010908.165207
[41] Helfrich, K. R.; Send, U., Finite-amplitude evolution of two-layer geostrophic vortices, J. Fluid Mech., 197, 331-348, (1988) · Zbl 0658.76102 · doi:10.1017/S0022112088003271
[42] Hoskins, B. J.; Mcintyre, M. E.; Robertson, A. W., On the use and significance of isentropic potential vorticity maps, Q. J. R. Meteorol. Soc., 111, 877-946, (1985) · doi:10.1002/qj.49711147002
[43] Ikeda, M., Instability and splitting of mesoscale rings using a two-layer quasi-geostrophic model on an f-plane, J. Phys. Oceanogr., 11, 987-998, (1981) · doi:10.1175/1520-0485(1981)011<0987:IASOMR>2.0.CO;2
[44] Katsman, C. A.; Van Der Vaart, P. C. F.; Dijkstra, H. A.; De Ruijter, W. P. M., Stability of multilayer ocean vortices: a parameter study including realistic Gulf stream and Agulhas rings, J. Phys. Oceanogr., 33, 1197-1218, (2003) · doi:10.1175/1520-0485(2003)033<1197:SOMOVA>2.0.CO;2
[45] Killworth, P. D.; Blundell, J. R.; Dewar, W. K., Primitive equation instability of wide oceanic rings. Part I. Linear theory, J. Phys. Oceanogr., 27, 941-962, (1997) · doi:10.1175/1520-0485(1997)027<0941:PEIOWO>2.0.CO;2
[46] Lahaye, N.; Zeitlin, V., Centrifugal, barotropic and baroclinic instabilities of isolated ageostrophic anticyclones in the two-layer rotating shallow water model and their nonlinear saturation, J. Fluid Mech., 762, 5-34, (2015) · doi:10.1017/jfm.2014.631
[47] Lai, D. Y.; Richardson, P. L., Distribution and movement of Gulf Stream rings, J. Phys. Oceanogr., 7, 670-683, (1977) · doi:10.1175/1520-0485(1977)007<0670:DAMOGS>2.0.CO;2
[48] Lazar, A.; Stegner, A.; Caldeira, R.; Dong, C.; Didelle, H.; Viboud, S., Inertial instability of intense stratified anticyclones. Part 2. Laboratory experiments, J. Fluid Mech., 732, 485-509, (2013) · Zbl 1294.76146 · doi:10.1017/jfm.2013.413
[49] Lazar, A.; Stegner, A.; Heifetz, E., Inertial instability of intense stratified anticyclones. Part 1. Generalized stability criterion, J. Fluid Mech., 732, 457-484, (2013) · Zbl 1294.76147 · doi:10.1017/jfm.2013.412
[50] Lelong, M.-P.; Sundermeyer, M. A., Geostrophic adjustment of an osolated diapycnal mixing event and its implications for small-scale lateral dispersion, J. Phys. Oceanogr., 35, 2352-2367, (2005) · doi:10.1175/JPO2835.1
[51] Mac Low, M.-M.; Ingersoll, A. P., Merging of vortices in the atmosphere of Jupiter: An analysis of Voyager images, Icarus, 65, 353-369, (1986) · doi:10.1016/0019-1035(86)90143-0
[52] Marcus, P. S., Jupiter’s Great Red Spot and other vortices, Annu. Rev. Astron. Astrophys., 31, 523-573, (1993) · doi:10.1146/annurev.aa.31.090193.002515
[53] Marcus, P. S., Prediction of a global climate change on Jupiter, Nature, 428, 828-831, (2004) · doi:10.1038/nature02470
[54] Marcus, P. S. & Hassanzadeh, P.2014On the surprising longevity of Jupiter’s centuries-old Great Red Spot. In APS Meeting Abstracts, 67th Annual Meeting of the APS Division of Fluid Dynamics.
[55] Marcus, P. S.; Pei, S.; Jiang, C.-H.; Barranco, J. A.; Hassanzadeh, P.; Lecoanet, D., Zombie vortex instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks, Astrophys. J., 808, 87, (2015) · doi:10.1088/0004-637X/808/1/87
[56] Marcus, P. S.; Pei, S.; Jiang, C.-H.; Hassanzadeh, P., Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows, Phys. Rev. Lett., 111, (2013) · doi:10.1103/PhysRevLett.111.084501
[57] Maslowe, S. A., Critical layers in shear flows, Annu. Rev. Fluid Mech., 18, 405-432, (1986) · Zbl 0634.76046 · doi:10.1146/annurev.fl.18.010186.002201
[58] Matsushima, T.; Marcus, P. S., A spectral method for polar coordinates, J. Comput. Phys., 120, 365-374, (1995) · Zbl 0842.65051 · doi:10.1006/jcph.1995.1171
[59] Matsushima, T.; Marcus, P. S., A spectral method for unbounded domains, J. Comput. Phys., 137, 321-345, (1997) · Zbl 0887.65103 · doi:10.1006/jcph.1997.5804
[60] Mcwilliams, J. C., Submesoscale, coherent vortices in the ocean, Rev. Geophys., 23, 165-182, (1985) · doi:10.1029/RG023i002p00165
[61] Meschanov, S. L.; Shapiro, G. I., A young lens of Red Sea Water in the Arabian Sea, Deep-Sea Res. I, 45, 1-13, (1998) · doi:10.1016/S0967-0637(97)00018-6
[62] Mkhinini, N.; Coimbra, A. L. S.; Stegner, A.; Arsouze, T.; Taupier-Letage, I.; Béranger, K., Long-lived mesoscale eddies in the eastern Mediterranean Sea: analysis of 20 years of AVISO geostrophic velocities, J. Geophys. Res., 119, 8603-8626, (2014) · doi:10.1002/2014JC010176
[63] Morel, Y.; Mcwilliams, J., Evolution of isolated interior vortices in the ocean, J. Phys. Oceanogr., 27, 727-748, (1997) · doi:10.1175/1520-0485(1997)027<0727:EOIIVI>2.0.CO;2
[64] Negretti, M. E.; Billant, P., Stability of a Gaussian pancake vortex in a stratified fluid, J. Fluid Mech., 718, 457-480, (2013) · Zbl 1284.76179 · doi:10.1017/jfm.2012.624
[65] Nguyen, H. Y.; Hua, B. L.; Schopp, R.; Carton, X., Slow quasigeostrophic unstable modes of a lens vortex in a continuously stratified flow, Geophys. Astro. Fluid, 106, 305-319, (2012) · Zbl 07649662 · doi:10.1080/03091929.2011.620568
[66] Olson, D. B., Rings in the ocean, Annu. Rev. Earth Planet. Sci., 19, 283-311, (1991) · doi:10.1146/annurev.ea.19.050191.001435
[67] O’Neill, M. E.; Emanuel, K. A.; Flierl, G. R., Polar vortex formation in giant-planet atmospheres due to moist convection, Nature Geosci., 8, 523-526, (2015) · doi:10.1038/ngeo2459
[68] Ozorio De Almeida, A. M., Hamiltonian Systems: Chaos and Quantization, (1988), Cambridge University Press · Zbl 0734.58002
[69] Paillet, J.; Le Cann, B.; Carton, X.; Morel, Y.; Serpette, A., Dynamics and evolution of a northern meddy, J. Phys. Oceanogr., 32, 55-79, (2002) · doi:10.1175/1520-0485(2002)032<0055:DAEOAN>2.0.CO;2
[70] Perret, G.; Dubos, T.; Stegner, A., How large-scale and cyclogeostrophic barotropic instabilities favor the formation of anticyclonic vortices in the ocean, J. Phys. Oceanogr., 41, 303-328, (2011) · doi:10.1175/2010JPO4362.1
[71] Pingree, R. D.; Le Cann, B., Structure of a meddy (Bobby 92) southeast of the Azores, Deep-Sea Res. I, 40, 2077-2103, (1993) · doi:10.1016/0967-0637(93)90046-6
[72] Prater, M. D.; Sanford, T. B., A meddy off Cape St. Vincent. Part I. Description, J. Phys. Oceanogr., 24, 1572-1586, (1994) · doi:10.1175/1520-0485(1994)024<1572:AMOCSV>2.0.CO;2
[73] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, (2007), Cambridge University Press · Zbl 1132.65001
[74] Smyth, W. D.; Mcwilliams, J. C., Instability of an axisymmetric vortex in a stably stratified, rotating environment, Theor. Comput. Fluid Dyn., 11, 305-322, (1998) · Zbl 0923.76046 · doi:10.1007/s001620050095
[75] Stegner, A.; Dritschel, D. G., A numerical investigation of the stability of isolated shallow water vortices, J. Phys. Oceanogr., 30, 2562-2573, (2000) · doi:10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2
[76] Sundermeyer, M. A.; Lelong, M.-P., Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events, J. Phys. Oceanogr., 35, 2368-2386, (2005) · doi:10.1175/JPO2834.1
[77] Sutyrin, G., Why compensated cold-core rings look stable, Geophys. Res. Lett., 42, 5395-5402, (2015) · doi:10.1002/2015GL064378
[78] Tsang, Y.-K.; Dritschel, D. G., Ellipsoidal vortices in rotating stratified fluids: beyond the quasi-geostrophic approximation, J. Fluid Mech., 762, 196-231, (2015) · doi:10.1017/jfm.2014.630
[79] Tuckerman, L. S.; Barkley, D., Global bifurcation to traveling waves in axisymmetric convection, Phys. Rev. Lett., 61, 408-411, (1988) · doi:10.1103/PhysRevLett.61.408
[80] Tyrlis, E.; Hoskins, B. J., Aspects of a Northern hemisphere atmospheric blocking climatology, J. Atmos. Sci., 65, 1638-1652, (2008) · doi:10.1175/2007JAS2337.1
[81] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, (2006), Cambridge University Press · Zbl 1374.86002 · doi:10.1017/CBO9780511790447
[82] Vasavada, A. R.; Showman, A. P., Jovian atmospheric dynamics: an update after Galileo and Cassini, Rep. Prog. Phys., 68, 1935-1996, (2005) · doi:10.1088/0034-4885/68/8/R06
[83] Yim, E.; Billant, P., On the mechanism of the Gent-McWilliams instability of a columnar vortex in stratified rotating fluids, J. Fluid Mech., 780, 5-44, (2015) · Zbl 1382.76285 · doi:10.1017/jfm.2015.426
[84] Yim, E.; Billant, P.; Ménesguen, C., Stability of an isolated pancake vortex in continuously stratified-rotating fluids, J. Fluid Mech., 801, 508-553, (2016) · Zbl 1462.76061 · doi:10.1017/jfm.2016.402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.