zbMATH — the first resource for mathematics

Regression analysis of zero-inflated time-series counts: application to air pollution related emergency room visit data. (English) Zbl 07263484
Summary: Time-series count data with excessive zeros frequently occur in environmental, medical and biological studies. These data have been traditionally handled by conditional and marginal modeling approaches separately in the literature. The conditional modeling approaches are computationally much simpler, whereas marginal modeling approaches can link the overall mean with covariates directly. In this paper, we propose new models that can have conditional and marginal modeling interpretations for zero-inflated time-series counts using compound Poisson distributed random effects. We also develop a computationally efficient estimation method for our models using a quasi-likelihood approach. The proposed method is illustrated with an application to air pollution-related emergency room visits. We also evaluate the performance of our method through simulation studies.
62-XX Statistics
Full Text: DOI
[1] Dalrymple, M. L., Hudson, I. L. and Ford, R. P.K. 2003. Finite mixture, zero-inflated Poisson and hurdle models with application to SIDS. Comput. Statist. Data Anal., 41: 491-504. · Zbl 1429.62513
[2] Hasan, M. T., Sneddon, G. and Ma, R. 2009. Pattern-mixture zero-inflated mixed models for longitudinal unbalanced count data with excessive zeros. Biom. J., 51: 946-960.
[3] Hasan, M. T., Sutradhar, B. C. and Sneddon, G. 2007. On correlation models for longitudinal failure times data. Sankhy ##img## ##img##, 69: 548-580. · Zbl 1193.62169
[4] Jørgensen, B. 1997. The Theory of Dispersion Models, London: Chapman and Hall.
[5] Jørgensen, B., Lundbye-Christensen, S., Song, X.-K. and Sun, L. 1996. A longitudinal study of emergency room visits and air pollution for Prince George, British Columbia. Stat. Med., 15: 823-836.
[6] Lee, K., Joo, Y., Song, J. J. and Harper, D. W. 2011. Analysis of zero-inflated clustered count data: A marginalized model approach. Comput. Statist. Data Anal., 55: 824-837. · Zbl 1247.62108
[7] Lee, Y. and Nelder, J. A. 1996. Hierarchical generalized linear models (with discussion). J. R. Stat. Sco. Ser. B, 58: 619-678. · Zbl 0880.62076
[8] Lee, A. H., Wang, K., Yau, K. K.W., Carrivick, P. J.W. and Stevenson, M. R. 2005. Modelling bivariate count series with excess zeros. Math. Biosci., 196: 226-237. · Zbl 1071.62079
[9] Liang, K.-Y. and Zeger, S. L. 1986. Longitudinal data analysis using generalized linear models. Biometrika, 73: 13-22. · Zbl 0595.62110
[10] Ma, R., Hasan, M. T. and Sneddon, G. 2009. Modeling heterogeneity in clustered count data with extra zeros using compound Poisson random effect. Stat. Med., 28: 2356-2369.
[11] Ma, R. and Jørgensen, B. 2007. Nested generalized linear mixed models: An orthodox best linear unbiased predictor approach. J. R. Stat. Soc. Ser. B, 69: 625-641.
[12] Ma, R., Krewski, D. and Burnett, R. T. 2003. Random effect Cox models: A Poisson modelling approach. Biometrika, 90: 157-169. · Zbl 1035.62114
[13] Min, Y. and Agresti, A. 2002. Modeling nonnegative data with clumping at zero: A survey. J. Iranian Stat. Soc., 1: 7-35. · Zbl 1403.62117
[14] Neuhaus, J. M. and McCulloch, C. E. 2011. Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics, 67: 270-279. · Zbl 1217.62099
[15] Prince George Airshed Technical Management Committee. Prince George Air Quality Management Background Report, Ministry of Environment, Lands and Parks, British Columbia, 1996
[16] Sutradhar, B. C. and Bari, W. 2007. On generalized quasilikelihood inference in longitudinal mixed model for count data. Sankhy ##img## ##img##, 69: 671-699. · Zbl 1193.62173
[17] Yau, K. K.W., Lee, A. H. and Carrivick, P. J.W. 2004. Modelling zero-inflated count series with application to occupational health. Comput. Methods Programs Biomed., 74: 47-52.
[18] Zeger, S. L. 1988. A regression model for time series of counts. Biometrika, 75: 621-629. · Zbl 0653.62064
[19] Zhao, Y., Lee, A. H., Burke, V. and Yau, K. K.W. 2009. Testing for zero-inflation in count series: Application to occupational health. J. Appl. Stat., 36: 1353-1359.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.