×

zbMATH — the first resource for mathematics

Evaluating the precision of bivariate attribute measurements. (English) Zbl 1184.62219
Summary: Many quality improvement programs employ measurement system analysis (MSA) to ensure the reliability of measurement results, which are the basis for conclusions regarding the behaviour of critical quality characteristics. The gauge repeatability and reproducibility (R&R) study is an important approach for evaluating the precision of MSA. Although many gauge capability studies exist and are common in industry, few have discussed cases with attribute data. Modern manufacturing processes must monitor two or more related quality characteristics simultaneously to enhance the quality management effectiveness. This study presents a novel model for evaluating gauge R&R for bivariate attribute data. An alloy manufacturing case is utilized to illustrate the process and potential of the proposed model. Findings are employed to assess and improve measurement systems with bivariate attribute data.
MSC:
62P30 Applications of statistics in engineering and industry; control charts
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/10629360500282171 · Zbl 1108.62130
[2] Mandel J., J. Qual. Technol. 4 pp 74– (1972)
[3] DOI: 10.1016/0169-7439(91)80058-X
[4] DOI: 10.1520/JTE11472J
[5] American Society for Testing and Materials pp 1– (1999)
[6] DOI: 10.1080/08982119308918725
[8] Burdick R. K., J. Qual. Technol. 34 pp 97– (2002)
[9] Burdick R. K., J. Qual. Technol. 35 pp 342– (2003)
[10] DOI: 10.1198/004017001750386332
[11] DOI: 10.1002/qre.516
[12] DOI: 10.1002/sim.1886
[13] DOI: 10.1080/08982110500225562
[14] Myers R. H., Generalized Linear Models with Applications in Engineering and the Sciences (2002) · Zbl 0996.62065
[15] DOI: 10.2307/2684835 · Zbl 04523798
[16] DOI: 10.1002/1099-1638(200005/06)16:3<173::AID-QRE327>3.0.CO;2-#
[17] DOI: 10.1016/S0378-3758(02)00305-1 · Zbl 1032.62006
[18] DOI: 10.1002/qre.521
[19] DOI: 10.1002/qre.603
[20] DOI: 10.1080/00207540412331299693 · Zbl 1067.62119
[21] DOI: 10.1023/A:1019614312908
[22] DOI: 10.1111/j.1467-9574.2004.00126.x · Zbl 1059.62011
[23] DOI: 10.1080/10629360600569188 · Zbl 1144.62367
[24] DOI: 10.1080/0094965031000062168 · Zbl 1042.62089
[25] DOI: 10.1080/10629360500108897 · Zbl 1088.62089
[26] DOI: 10.1080/10629360600687717 · Zbl 1118.62092
[27] Holgate P., Biometrika 51 pp 241– (1964)
[28] DOI: 10.1007/s001840400348 · Zbl 1079.62055
[29] DOI: 10.2307/1270992
[30] DOI: 10.1016/S0001-4575(02)00036-2
[31] DOI: 10.1016/j.mbs.2005.05.001 · Zbl 1071.62079
[32] DOI: 10.1080/02331880310001646617
[33] DOI: 10.1002/sim.2485
[34] DOI: 10.1080/02664760600679643 · Zbl 1118.62315
[35] DOI: 10.1002/sim.2382
[36] DOI: 10.1080/03610920601001782 · Zbl 1109.62014
[39] American Society for Testing and Materials pp 170– (1998)
[40] DOI: 10.1002/qre.868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.