×

Pricing bounds for volatility derivatives via duality and least squares Monte Carlo. (English) Zbl 1418.91599

Summary: Derivatives on the Chicago Board Options Exchange volatility index have gained significant popularity over the last decade. The pricing of volatility derivatives involves evaluating the square root of a conditional expectation which cannot be computed by direct Monte Carlo methods. Least squares Monte Carlo methods can be used, but the sign of the error is difficult to determine. In this paper, we propose a new model-independent technique for computing upper and lower pricing bounds for volatility derivatives. In particular, we first present a general stochastic duality result on payoffs involving convex (or concave) functions. This result also allows us to interpret these contingent claims as a type of chooser options. It is then applied to volatility derivatives along with minor adjustments to handle issues caused by the square root function. The upper bound involves the evaluation of a variance swap, while the lower bound involves estimating a martingale increment corresponding to its hedging portfolio. Both can be achieved simultaneously using a single linear least square regression. Numerical results show that the method works very well for futures, calls and puts under a wide range of parameter choices.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
91G20 Derivative securities (option pricing, hedging, etc.)
65C05 Monte Carlo methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Whaley, RE, Derivatives on market volatility: hedging tools long overdue, J. Deriv., 1, 71-84, (1993) · doi:10.3905/jod.1993.407868
[2] Grünbichler, A.; Longstaff, FA, Valuing futures and options on volatility, J. Bank. Finance, 20, 985-1001, (1996) · doi:10.1016/0378-4266(95)00034-8
[3] Detemple, J.; Osakwe, C., The valuation of volatility options, Eur. Finance Rev., 4, 21-50, (2000) · Zbl 0978.91031 · doi:10.1023/A:1009814324980
[4] Zhang, JE; Zhu, Y., VIX futures, J. Futures Mark., 26, 521-531, (2006) · doi:10.1002/fut.20209
[5] Lian, GH; Zhu, SP, Pricing VIX options with stochastic volatility and random jumps, Decis. Econ. Finance, 36, 71-88, (2013) · Zbl 1273.91442 · doi:10.1007/s10203-011-0124-0
[6] Sepp, A.: VIX option pricing in a jump-diffusion model. Risk Magazine, April 2008, pp. 84-89
[7] Baldeaux, J.; Badran, A., Consistent modelling of VIX and equity derivatives using a 3/2 plus jumps model, Appl. Math. Finance, 21, 299-312, (2014) · Zbl 1395.91429 · doi:10.1080/1350486X.2013.868631
[8] Cont, R.; Kokholm, T., A consistent pricing model for index options and volatility derivatives, Math. Finance, 23, 248-274, (2013) · Zbl 1262.91132 · doi:10.1111/j.1467-9965.2011.00492.x
[9] Carriere, JF, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insur. Math. Econ., 19, 19-30, (1996) · Zbl 0894.62109 · doi:10.1016/S0167-6687(96)00004-2
[10] Longstaff, FA; Schwartz, ES, Valuing American options by simulation: a simple least-squares approach, Rev. Financ. stud., 14, 113-147, (2001) · Zbl 1386.91144 · doi:10.1093/rfs/14.1.113
[11] Rogers, LC, Monte Carlo valuation of American options, Math. Finance, 12, 271-286, (2002) · Zbl 1029.91036 · doi:10.1111/1467-9965.02010
[12] Haugh, MB; Kogan, L., Pricing American options: a duality approach, Oper. Res., 52, 258-270, (2004) · Zbl 1165.91401 · doi:10.1287/opre.1030.0070
[13] Andersen, L.; Broadie, M., Primal-dual simulation algorithm for pricing multidimensional American options, Manag. Sci., 50, 1222-1234, (2004) · doi:10.1287/mnsc.1040.0258
[14] Schoenmakers, J.; Zhang, J.; Huang, J., Optimal dual martingales, their analysis, and application to new algorithms for Bermudan products, SIAM J. Financ. Math., 4, 86-116, (2013) · Zbl 1282.91346 · doi:10.1137/110832513
[15] Joshi, M.; Tang, R., Effective sub-simulation-free upper bounds for the Monte Carlo pricing of callable derivatives and various improvements to existing methodologies, J. Econ. Dyn. Control, 40, 25-45, (2014) · Zbl 1402.91893 · doi:10.1016/j.jedc.2013.12.001
[16] Marco, S.; Henry-Labordere, P., Linking vanillas and VIX options: a constrained martingale optimal transport problem, SIAM J. Financ. Math., 6, 1171-1194, (2015) · Zbl 1386.91138 · doi:10.1137/140960724
[17] Guyon, J., Menegaux, R., Nutz, M.: Bounds for VIX futures given S&P 500 smiles. (to appear in Finance and Stochastics, 2016) · Zbl 1422.91698
[18] Rockafellar, R.T.: Convex Analysis. Princeton university press, Princeton (2015)
[19] Fries, Christian P., Foresight Bias and Suboptimality Correction in Monte—Carlo Pricing of Options with Early Exercise, 645-649, (2008), Berlin, Heidelberg · Zbl 1308.91186 · doi:10.1007/978-3-540-71992-2_107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.