×

zbMATH — the first resource for mathematics

On the scarcity of weak coupling in the string landscape. (English) Zbl 1387.83084
Summary: We study the geometric requirements on a threefold base for the corresponding F-theory compactification to admit a weakly-coupled type IIB limit. We examine both the standard Sen limit and a more restrictive limit, and determine conditions sufficient for their non-existence for both toric bases and more general algebraic bases. In a large ensemble of geometries generated by base changing resolutions we derive an upper bound on the frequency with which a weak-coupling limit may occur, and find that such limits are extremely rare. Our results sharply quantify the widely held notion that the vast number of weakly-coupled IIB vacua is but a tiny fraction of the landscape.

MSC:
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bousso, R.; Polchinski, J., Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP, 06, 006, (2000) · Zbl 0990.83543
[2] Ashok, S.; Douglas, MR, Counting flux vacua, JHEP, 01, 060, (2004) · Zbl 1243.83060
[3] Denef, F.; Douglas, MR, Distributions of flux vacua, JHEP, 05, 072, (2004)
[4] D.K. Mayorga Pena and R. Valandro, Weak coupling limit of F-theory models with MSSM spectrum and massless U(1)’s, arXiv:1708.09452 [INSPIRE]. · Zbl 1388.83684
[5] C. Vafa, Evidence for F-theory, Nucl. Phys.B 469 (1996) 403 [hep-th/9602022] [INSPIRE]. · Zbl 1003.81531
[6] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys.B 476 (1996) 437 [hep-th/9603161] [INSPIRE]. · Zbl 0925.14005
[7] A. Sen, F-theory and orientifolds, Nucl. Phys.B 475 (1996) 562 [hep-th/9605150] [INSPIRE]. · Zbl 1056.81068
[8] Sen, A., Orientifold limit of F-theory vacua, Nucl. Phys. Proc. Suppl., 68, 92, (1998) · Zbl 0999.81520
[9] Morrison, DR; Taylor, W., Classifying bases for 6D F-theory models, Central Eur. J. Phys., 10, 1072, (2012) · Zbl 1255.81210
[10] D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys.60 (2012) 1187 [arXiv:1204.0283] [INSPIRE]. · Zbl 1388.81495
[11] Grassi, A.; Halverson, J.; Shaneson, J.; Taylor, W., Non-higgsable QCD and the standard model spectrum in F-theory, JHEP, 01, 086, (2015) · Zbl 1388.81924
[12] J. Halverson and W. Taylor, \(P\)\^{1}-bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models, JHEP09 (2015) 086 [arXiv:1506.03204] [INSPIRE]. · Zbl 1388.81722
[13] W. Taylor and Y.-N. Wang, A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua, JHEP01 (2016) 137 [arXiv:1510.04978] [INSPIRE]. · Zbl 1388.81013
[14] J. Halverson, C. Long and B. Sung, Algorithmic universality in F-theory compactifications, Phys. Rev.D 96 (2017) 126006 [arXiv:1706.02299] [INSPIRE]. · Zbl 0661.14031
[15] J. Halverson, Strong coupling in F-theory and geometrically non-Higgsable seven-branes, Nucl. Phys.B 919 (2017) 267 [arXiv:1603.01639] [INSPIRE]. · Zbl 1361.81117
[16] N. Nakayama, On Weierstrass models, in Algebraic geometry and commutative algebra, volume II, Kinokuniya, Tokyo Japan, (1988), pg. 405.
[17] Clingher, A.; Donagi, R.; Wijnholt, M., The Sen limit, Adv. Theor. Math. Phys., 18, 613, (2014) · Zbl 1314.81143
[18] Taylor, W., On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP, 08, 032, (2012) · Zbl 1397.14048
[19] D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE]. · Zbl 1348.83091
[20] G. Martini and W. Taylor, 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP06 (2015) 061 [arXiv:1404.6300] [INSPIRE]. · Zbl 1388.83862
[21] S.B. Johnson and W. Taylor, Calabi-Yau threefolds with large h\^{2,1}, JHEP10 (2014) 023 [arXiv:1406.0514] [INSPIRE]. · Zbl 1314.81143
[22] W. Taylor and Y.-N. Wang, Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua, Adv. Theor. Math. Phys.21 (2017) 1063 [arXiv:1504.07689] [INSPIRE]. · Zbl 1386.14150
[23] Braun, AP; Watari, T., The vertical, the horizontal and the rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications, JHEP, 01, 047, (2015) · Zbl 1388.81495
[24] Watari, T., Statistics of F-theory flux vacua for particle physics, JHEP, 11, 065, (2015)
[25] J. Halverson and J. Tian, Cost of seven-brane gauge symmetry in a quadrillion F-theory compactifications, Phys. Rev.D 95 (2017) 026005 [arXiv:1610.08864] [INSPIRE]. · Zbl 0872.14034
[26] D.R. Morrison and W. Taylor, Non-Higgsable clusters for 4D F-theory models, JHEP05 (2015) 080 [arXiv:1412.6112] [INSPIRE]. · Zbl 1388.81871
[27] Taylor, W.; Wang, Y-N, The F-theory geometry with most flux vacua, JHEP, 12, 164, (2015) · Zbl 1388.81367
[28] Carifio, J.; Halverson, J.; Krioukov, D.; Nelson, BD, Machine learning in the string landscape, JHEP, 09, 157, (2017) · Zbl 1382.81155
[29] Blumenhagen, R.; Grimm, TW; Jurke, B.; Weigand, T., F-theory uplifts and guts, JHEP, 09, 053, (2009) · Zbl 1203.81188
[30] Grassi, A.; Morrison, DR, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys., 6, 51, (2012) · Zbl 1270.81174
[31] G. Di Cerbo and R. Svaldi, Birational boundedness of low dimensional elliptic Calabi-Yau varieties with a section, arXiv:1608.02997. · Zbl 1056.14017
[32] J. Kollár and M. Larsen, Quotients of Calabi-Yau varieties, in Algebra, arithmetic, and geometry: in honor of Yu.I. Manin. Volume II, Progr. Math.270, Birkhäuser Boston Inc., Boston MA U.S.A., (2009), pg. 179 [math.AG/0701466].
[33] Roan, S-S, Minimal resolutions of Gorenstein orbifolds in dimension three, Topology, 35, 489, (1996) · Zbl 0872.14034
[34] Roan, S-S, On the generalization of Kummer surfaces, J. Diff. Geom., 30, 523, (1989) · Zbl 0661.14031
[35] D. Joyce, Riemannian holonomy groups and calibrated geometry, Springer Berlin Heidelberg, Berlin Heidelberg Germany, (2003), pg. 1. · Zbl 1016.53041
[36] Degeratu, A., Flops of crepant resolutions, Turkish J. Math, 28, 23, (2004) · Zbl 1056.14017
[37] S. Yau and Y. Yu, Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc.505, American Mathematical Society, Providence RI U.S.A., (1993). · Zbl 0799.14001
[38] Facchini, L.; González-Alonso, V.; Lason, M., Cox rings of du val singularities, Le Matematiche, 66, 115, (2011) · Zbl 1252.14005
[39] Donagi, R.; Wijnholt, M., Model building with F-theory, Adv. Theor. Math. Phys., 15, 1237, (2011) · Zbl 1260.81194
[40] Beasley, C.; Heckman, JJ; Vafa, C., GUTs and exceptional branes in F-theory — I, JHEP, 01, 058, (2009) · Zbl 1243.81142
[41] A. Collinucci and I. García-Etxebarria, \(E\)_{6}Yukawa couplings in F-theory as D-brane instanton effects, JHEP03 (2017) 155 [arXiv:1612.06874] [INSPIRE]. · Zbl 1243.81142
[42] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81510
[43] Nekrasov, NA, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831, (2003) · Zbl 1056.81068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.