×

Automated simplification of large symbolic expressions. (English) Zbl 1310.68259

Summary: We present a set of algorithms for automated simplification of symbolic constants of the form \(\sum_i{\alpha}_ix_i\) with \({\alpha}_i\) rational and \(x_i\) complex. The included algorithms, called SimplifySum (available from https://github.com/alexkaiser/SimplifySum) and implemented in Mathematica, remove redundant terms, attempt to make terms and the full expression real, and remove terms using repeated application of the multipair PSLQ integer relation detection algorithm. Also included are facilities for making substitutions according to user-specified identities. We illustrate this toolset by giving some real-world examples of its usage, including one, for instance, where the tool reduced a symbolic expression of approximately 100000 characters in size enough to enable manual manipulation to one with just four simple terms.

MSC:

68W30 Symbolic computation and algebraic computation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bailey, D. H.; Borwein, J. M., Exploratory experimentation and computation, Not. Am. Math. Soc., 58, 1410-1419 (Nov. 2011)
[2] Bailey, D. H.; Borwein, J. M.; Broadhurst, D.; Zudilin, W., Experimental Mathematics and Mathematical Physics, Contemp. Math., vol. 517, 41-58 (2010) · Zbl 1221.82006
[3] Bailey, D. H.; Borwein, J. M.; Crandall, R. E., Advances in the theory of box integrals, Math. Comput., 79, 271, 1839-1866 (2010) · Zbl 1227.11127
[4] Bailey, D. H.; Broadhurst, D. J., Parallel integer relation detection: Techniques and applications, Math. Comput., 70, 1719-1736 (2000) · Zbl 1037.11090
[5] Beaumont, J.; Bradford, R.; Davenport, J. H., Better simplification of elementary functions through power series, (Proc. 2003 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ03 (2003), ACM: ACM New York, NY, USA), 30-36 · Zbl 1072.68646
[6] Beaumont, J. C.; Bradford, R. J.; Davenport, J. H.; Phisanbut, N., A poly-algorithmic approach to simplifying elementary functions, (Proc. 2004 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ04 (2004), ACM: ACM New York, NY, USA), 27-34 · Zbl 1134.68594
[7] Borwein, D.; Borwein, J. M.; Straub, A.; Wan, J., Log-sine evaluations of Mahler measures, part II, Integers, 12, 6, 1179-1212 (2012) · Zbl 1266.33022
[8] Borwein, J. M.; Chan, O.-Y.; Crandall, R. E., Higher-dimensional box integrals, Exp. Math., 19, 4, 431-446 (2010) · Zbl 1251.33002
[9] Borwein, J. M.; Crandall, R. E., Closed forms: what they are and why we care, Not. Am. Math. Soc., 60, 1 (2013) · Zbl 1334.33042
[10] Borwein, J. M.; Zucker, I. J.; Boersma, J., The evaluation of character Euler double sums, Ramanujan J., 15, 377-405 (2008) · Zbl 1241.11108
[11] Borwein, P.; Hare, K. G.; Meichsner, A., Reverse symbolic computations, the identify function, (Maple Summer Workshop (2002))
[12] Bradford, R.; Davenport, J. H., Towards better simplification of elementary functions, (Proc. 2002 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ02 (2002), ACM: ACM New York, NY, USA), 16-22 · Zbl 1072.68651
[13] Buchberger, B.; Loos, R., Algebraic simplification, (Buchberger, B.; Collins, G. E.; Loos, R., Computer Algebra - Symbolic and Algebraic Computation (1982), Springer Verlag: Springer Verlag Vienna, New York), 11-43 · Zbl 0494.68045
[14] Carette, J., Understanding expression simplification, (Proc. 2004 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ04 (2004), ACM: ACM New York, NY, USA), 72-79 · Zbl 1134.68596
[15] Casas, R.; Fernández-Camacho, M.-I.; Steyaert, J.-M., Algebraic simplification in computer algebra: an analysis of bottom-up algorithms, Theor. Comput. Sci., 74, 3, 273-298 (1990) · Zbl 0701.68045
[16] Caviness, B. F., On canonical forms and simplification, J. ACM, 17, 2, 385-396 (Apr. 1970)
[17] Caviness, B. F.; Fateman, R. J., Simplification of radical expressions, (Proc. Third ACM Symp. on Symb. and Algebr. Comp. SYMSAC ʼ76 (1976), ACM: ACM New York, NY, USA), 329-338
[18] Chow, T. Y., What is a closed-form number?, Am. Math. Mon., 106, 5, 440-448 (1999) · Zbl 1003.11063
[19] Dingle, A.; Fateman, R. J., Branch cuts in computer algebra, (Proc. 1994 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ94 (1994), ACM: ACM New York, NY, USA), 250-257 · Zbl 0928.68146
[20] Fateman, R., High-level proofs of mathematical programs using automatic differentiation, simplification, and some common sense, (Proc. 2003 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ03 (2003), ACM: ACM New York, NY, USA), 88-94 · Zbl 1072.68663
[21] Fateman, R. J., Essays in algebraic simplification (1972), Tech. rep., Cambridge, MA, USA
[22] Fitch, J. P., On algebraic simplification, Comput. J., 16, 1, 23-27 (1973) · Zbl 0251.68022
[23] Gutierrez, J.; Recio, T., Advances on the simplification of sine-cosine equations, J. Symb. Comput., 26, 1, 31-70 (1998) · Zbl 0912.65041
[24] Harrington, S. J., A new symbolic integration system in reduce, Comput. J., 22, 2, 127-131 (1979) · Zbl 0395.68044
[25] Hearn, A. C., Reduce 2: A system and language for algebraic manipulation, (Proc. Second ACM Symp. on Symb. and Algebr. Manip. SYMSAC ʼ71 (1971), ACM: ACM New York, NY, USA), 128-133
[26] Kauers, M., Sumcracker: A package for manipulating symbolic sums and related objects, J. Symb. Comput., 41, 9, 1039-1057 (2006) · Zbl 1122.68746
[27] Lagarias, J. C.; Odlyzko, A. M., Solving low-density subset sum problems, J. ACM, 32, 1, 229-246 (1985) · Zbl 0632.94007
[28] Lewin, L., Polylogarithms and Associated Functions (1981), North-Holland · Zbl 0465.33001
[29] Maple, Maple. Maplesoft (2012), Waterloo ON, Canada
[30] Maxima, Maxima, a computer algebra system (2011), Version 5.25.1
[31] Monagan, M.; Pearce, R., Rational simplification modulo a polynomial ideal, (Proc. 2006 Int. Symp. on Symb. and Algebr. Comp. ISSAC ʼ06 (2006), ACM: ACM New York, NY, USA), 239-245 · Zbl 1356.13037
[32] Moses, J., Algebraic simplification a guide for the perplexed, (Proc. Second ACM Symp. on Symb. and Algebr. Manip. SYMSAC ʼ71 (1971), ACM: ACM New York, NY, USA), 282-304 · Zbl 0222.68017
[33] Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Digital Handbook of Mathematical Functions (2012)
[34] Schneider, C., A refined difference field theory for symbolic summation, J. Symb. Comput., 43, 9, 611-644 (2008) · Zbl 1147.33006
[35] Stein, W., Sage Mathematics Software (2012), (Version 5.2). The Sage Development Team
[36] Stoutemyer, D. R., Ten commandments for good default expression simplification, J. Symb. Comput., 46, 7, 859-887 (2011), Special issue in honour of Keith Geddes on his 60th birthday · Zbl 1216.68348
[37] Zippel, R., Simplification of expressions involving radicals, J. Symb. Comput., 1, 2, 189-210 (1985) · Zbl 0574.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.