×

Comparison theorem for viability kernels via conic preorders. (English) Zbl 1453.92294

Summary: In natural resource management, decision-makers often aim at maintaining the state of the system within a desirable set for all times. For instance, fisheries management procedures include keeping the spawning stock biomass over a critical threshold. Another example is given by the peak control of an epidemic outbreak that encompasses maintaining the number of infected individuals below medical treatment capacities. In mathematical terms, one controls a dynamical system. Then, keeping the state of the system within a desirable set for all times is possible when the initial state belongs to the so-called viability kernel. We introduce the notion of conic quasimonotonicity reducibility. With this property, we provide a comparison theorem by inclusion between two viability kernels, corresponding to two control systems in the infinite horizon case. We also derive conditions for equality. We illustrate the method with a model for the biocontrol of a vector-transmitted epidemic.

MSC:

92D30 Epidemiology
93C20 Control/observation systems governed by partial differential equations
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Béné, C.; Doyen, L.; Gabay, D., A viability analysis for a bio-economic model, Ecol. Econ., 36, 3, 385-396 (2001)
[2] De Lara, M.; Doyen, L.; Guilbaud, T.; Rochet, M.-J., Is a management framework based on spawning-stock biomass indicators sustainable? A viability approach, ICES J. Mar. Sci., 64, 761-767 (2007)
[3] Eisenack, K.; Scheffran, J.; Kropp, J. P., Viability analysis of management frameworks for fisheries, Environ. Model. Assess., 11, 1, 69-79 (2006)
[4] Krawczyk, J. B.; Pharo, A.; Serea, O. S.; Sinclair, S., Computation of viability kernels: a case study of by-catch fisheries, Comput. Manag. Sci., 10, 4, 365-396 (2013) · Zbl 1282.91249
[5] Rapaport, A.; Terreaux, J. P.; Doyen, L., Viability analysis for the sustainable management of renewable resources, Math. Comput. Modelling, 43, 5-6, 466-484 (2006) · Zbl 1139.49018
[6] De Lara, M.; Sepulveda, L., Viable control of an epidemiological model, Math. Biosci., 280, 24-37 (2016) · Zbl 1359.92104
[7] Brady, O. J.; Smith, D. L.; Scott, T. W.; Hay, S. I., Dengue disease outbreak definitions are implicitly variable, Epidemics, 11, 92-102 (2015)
[8] World Health Organization, Operational Guide: Early Warning and Response System (EWARS) for Dengue Outbreaks (2017)
[9] Williams, B. K.; Nichols, J. D.; Conroy, M. J., Analysis and Management of Animal Populations (2002), Academic Press: Academic Press San Diego
[10] Aubin, J., A survey of viability theory, SIAM J. Control Optim., 28, 4, 749-788 (1990) · Zbl 0714.49021
[11] Aubin, J.-P.; Bayen, A. M.; Saint-Pierre, P., Viability Theory (2011), Springer: Springer Dordrecht · Zbl 1238.93001
[12] Oubraham, A.; Zaccour, G., A survey of applications of viability theory to the sustainable exploitation of renewable resources, Ecol. Econ., 145, Suppl. C, 346-367 (2018)
[13] Bonneuil, N., Computing the viability kernel in large state dimension, J. Math. Anal. Appl., 323, 2, 1444-1454 (2006) · Zbl 1111.65059
[14] Deffuant, G.; Chapel, L.; Martin, S., Approximating viability kernels with support vector machines, IEEE Trans. Automat. Control, 52, 5, 933-937 (2007) · Zbl 1366.93049
[15] De Lara, M.; Doyen, L., Sustainable Management of Natural Resource: Mathematical Models and Methods (2008), Springer: Springer New York
[16] De Lara, M.; Doyen, L.; Guilbaud, T.; Rochet, M.-J., Monotonicity properties for the viable control of discrete-time systems, Systems Control Lett., 56, 4, 296-302 (2007) · Zbl 1113.93075
[17] De Lara, M.; Gajardo, P.; Ramirez, H., Viable states for monotone harvest models, Systems Control Lett., 60, 192-197 (2011) · Zbl 1210.93044
[18] Maidens, J. N.; Kaynama, S.; Mitchell, I. M.; Oishi, M. M.; Dumont, G. A., Lagrangian methods for approximating the viability kernel in high-dimensional systems, Automatica, 49, 7, 2017-2029 (2013) · Zbl 1364.93057
[19] Gajardo, P.; Hermosilla, C., The viability kernel of dynamical systems with mixed constraints: A level-set approach, Systems Control Lett., 127, 6-12 (2019) · Zbl 1425.93173
[20] Yousefi, M.; van Heusden, K.; Mitchell, I. M.; Dumont, G. A., Model-invariant viability kernel approximation, Systems Control Lett., 127, 13-18 (2019) · Zbl 1425.93029
[21] Saint-Pierre, P., Approximation of the viability kernel, Appl. Math. Optim., 29, 2, 187-209 (1994) · Zbl 0790.65081
[22] Caswell, H., Matrix Population Models (2000), Sinauer Associates: Sinauer Associates Sunderland, MA
[23] Quinn, T. J.; Deriso, R. B., Quantitative Fish Dynamics, Biological Resource Management Series (1999), Oxford University Press: Oxford University Press New York
[24] Hirsch, M.; Smith, H., Monotone dynamical systems, (Cañada, A. F.A.; Drábek, P., HandBook of Differential Equations: Ordinary Differential Equations, Vol. 2 (2006), Elsevier), 239-357 · Zbl 1094.34003
[25] Hirsch, M. W.; Smith, H. L., Competitive and cooperative systems: A mini-review, (Benvenuti, L.; De Santis, A.; Farina, L., Positive Systems (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 183-190 · Zbl 1134.92358
[26] Clarke, F. H., (Optimization and Nonsmooth Analysis. Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts (1983), John Wiley & Sons, Inc., Wiley-Interscience Publication: John Wiley & Sons, Inc., Wiley-Interscience Publication New York) · Zbl 0582.49001
[27] Clarke, F. H.; Ledyaev, Y. S.; Stern, R. J.; Wolenski, P. R., (Nonsmooth Analysis and Control Theory. Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, vol. 178 (1998), Springer-Verlag: Springer-Verlag New York) · Zbl 1047.49500
[28] Angeli, D.; Sontag, E. D., Monotone control systems, IEEE Trans. Automat. Control, 48, 10, 1684-1698 (2003) · Zbl 1364.93326
[29] Smith, H., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (1995), American Mathematical Society · Zbl 0821.34003
[30] Bauschke, H. H.; Combettes, P. L., Convex analysis and monotone operator theory in Hilbert spaces, (CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2011), Springer: Springer New York) · Zbl 1218.47001
[31] Bliman, P.-A.; Aronna, M. S.; Coelho, F. C.; da Silva, M. A.H. B., Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76, 5, 1269-1300 (2018) · Zbl 1392.92096
[32] Cardona-Salgado, D.; Campo-Duarte, D. E.; Sepulveda-Salcedo, L. S.; Vasilieva, O., Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach, Appl. Math. Model., 82, 125-149 (2020) · Zbl 1481.92134
[33] Hale, J. K., Ordinary Differential Equations (1980), Robert E. Krieger Publishing Co. Inc.: Robert E. Krieger Publishing Co. Inc. Huntington, N.Y. · Zbl 0433.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.