×

MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement. (English) Zbl 1173.74432

Summary: With the aid of moving least square (MLS) approximation, a new class of three-dimensional finite elements are proposed for treating nonmatching meshes and adaptive mesh refinement, for which the existing finite elements are hardly efficient. With a special choice of the weight-function supports and the base functions, the method results in useful elements with the polynomial shape function, for which the \(C^{1}\) continuity breaks down on the boundaries between the neighboring subdomains comprising one element. The effectiveness of the new elements in handling the discontinuities due to nonmatching interfaces and automatic mesh refinement is demonstrated via three-dimensional examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[2] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[3] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluid, 20, 1081-1106 (1995) · Zbl 0881.76072
[4] Duarte, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[5] Melenk, J. M.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[6] Onate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L.; Sacco, C., A stabilized finite point method for analysis of fluid mechanics problems, Comput. Methods Appl. Mech. Engrg., 139, 315-346 (1996) · Zbl 0894.76065
[7] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Int. J. Numer. Methods Engrg., 43, 839-887 (1998) · Zbl 0940.74078
[8] Zhu, T.; Zhang, J.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput. Mech., 21, 223-235 (1998) · Zbl 0920.76054
[9] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[10] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., Stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. Numer. Methods Engrg., 50, 435-436 (2001)
[11] Quiroz, L.; Beckers, P., Non-conforming mesh gluing in the finite elements methods, Int. J. Numer. Methods Engrg., 38, 2165-2184 (1995) · Zbl 0833.73062
[12] Aminpour, M. A.; Ransom, J. B.; McCleary, S. L., A coupled analysis method for structures with independently modeled finite element sub-domains, Int. J. Numer. Methods Engrg., 38, 3695-3718 (1995) · Zbl 0836.73063
[13] Pantano, A.; Averill, R. C., A penalty-based finite element interface technology, Comput. Struct., 80, 1725-1748 (2002)
[14] Park, K. C.; Felippa, C. A.; Rebel, G., A simple algorithm for localized construction of non-matching structural interfaces, Int. J. Numer. Methods Engrg., 53, 2117-2142 (2002) · Zbl 1169.74653
[15] Kim, H.-G., Interface element method (IEM) for a partitioned system with non-matching interfaces, Comput. Methods Appl. Mech. Engrg., 191, 3165-3194 (2002) · Zbl 1101.74365
[16] Cho, Y.-S.; Jun, S.; Im, S.; Kim, H.-G., An improved interface element with variable nodes for non-matching finite element meshes, Comput. Methods Appl. Mech. Engrg., 194, 3022-3046 (2005) · Zbl 1092.74048
[17] Cho, Y.-S.; Im, S., MLS-based variable-node elements compatible with quadratic interpolation. Part I: formulation and application for non-matching meshes, Int. J. Numer. Methods Engrg., 65, 494-516 (2006) · Zbl 1179.74139
[18] Cho, Y.-S.; Im, S., MLS-based variable-node elements compatible with quadratic interpolation. Part II: application for finite crack element, Int. J. Numer. Methods Engrg., 65, 517-547 (2006) · Zbl 1275.74028
[19] J.H. Lim, S. Im, Y.-S. Cho, Variable-node elements for nonmatching meshes by means of MLS (moving least square) scheme, Int. J. Numer. Methods Engrg., in press.; J.H. Lim, S. Im, Y.-S. Cho, Variable-node elements for nonmatching meshes by means of MLS (moving least square) scheme, Int. J. Numer. Methods Engrg., in press. · Zbl 1194.74430
[20] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares method, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[21] Jin, X.; Li, G.; Aluru, R. N., On the equivalence between least square and kernel approximations in meshless methods, Comput. Model. Engrg. Sci., 2, 341-350 (2001)
[22] Liu, W. K.; Li, S.; Belytschko, T., Moving least square reproducing kernel method. Part I: method and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154 (1997) · Zbl 0883.65088
[23] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Engrg., 190, 6157-6181 (2001) · Zbl 0992.65119
[24] Han, W.; Meng, X., Some studies of the reproducing kernel particle method, (Lecture Notes in Computational Science and Engineering, vol. 26 (2002), Springer), 193-210 · Zbl 1090.65543
[25] Han, W.; Liu, W. K., Flexible piecewise approximation based on partition of unity, Adv. Comput. Math., 23, 191-199 (2005) · Zbl 1067.65125
[26] Liu, W. K.; Han, W.; Liu, H.; Li, S., Reproducing kernel element method Part I, theoretical formulation, Comput. Methods Appl. Mech. Engrg., 193, 933-951 (2004) · Zbl 1060.74670
[27] Li, S.; Lu, H.; Han, W.; Liu, W. K., Reproducing kernel element method, Part II globally conforming \(I_m/C_{n\) · Zbl 1093.74062
[28] Liu, G. R.; Gu, Y. T.; Dai, K. Y., Assessment and applications of point interpolation methods for computational mechanics, Int. J. Numer. Methods Engrg., 59, 1373-1397 (2004) · Zbl 1041.74562
[29] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0266.73008
[30] Hinton, E.; Campbell, J. S., Local and global stress smoothing of discontinuous finite element functions using a least square method, Int. J. Numer. Methods Engrg., 8, 461-480 (1974) · Zbl 0286.73066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.