×

A phase-field framework for failure modeling of variable stiffness composite laminae. (English) Zbl 1507.74102

Summary: Three-dimensional (3D) printing of continuous fiber-reinforced composites (FRCs) and automated fiber placement (AFP) technology have enabled the fabrication of variable stiffness composites (VSCs), a kind of advanced composite materials reinforced by curvilinear fibers, which have been demonstrated with superior global mechanical properties. However, the fracture behaviors, an indispensable factor in the engineering structure design, of the VSC are still unclear due to a lack of research. To fill in the gap, the paper presents a multi-phase-field approach to perform the failure analyses of VSC laminae at mesoscale through which the VSC lamina is modeled as an anisotropic while nonhomogenous brittle material. The proposed model is validated against experimental results of fracture behaviors of single edge cracked and open-hole FRC laminae. Then a systematic investigation of the failure analyses of the pre-cracked and open-hole VSC laminae under different designs is performed. The results reveal that the propagations of cracks are always along with the fiber orientations in notched VSC laminae. In addition, a progressive failure mode demonstrated by the load-displacement curve can be amazingly observed in some designs. Moreover, the guidance in the design of VSCs with discontinuities is also provided based on the modeling results. Our presented fundamental insights in designing the novel fracture-resistant FRCs may promote the application of VSCs in automotive and aerospace structures.

MSC:

74E30 Composite and mixture properties
74R05 Brittle damage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Braun, M.; Ariza, M. P., New lattice models for dynamic fracture problems of anisotropic materials, Composites B, 172, 760-768 (2019)
[2] Liew, K. M.; Pan, Z. Z.; Zhang, L. W., An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application, Compos. Struct., 216, 240-259 (2019)
[3] Hao, P.; Liu, D.; Wang, Y.; Liu, X.; Wang, B.; Li, G.; Feng, S., Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters, Compos. Struct., 219, 158-169 (2019)
[4] Liew, K. M.; Pan, Z.; Zhang, L.-W., The recent progress of functionally graded CNT reinforced composites and structures, Sci. China-Phys. Mech., 63, Article 234601 pp. (2020)
[5] Lukaszewicz, D. H.J. A.; Ward, C.; Potter, K. D., The engineering aspects of automated prepreg layup: History, present and future, Composites B, 43, 997-1009 (2012)
[6] Kabir, S. M.F.; Mathur, K.; Seyam, A.-F. M., A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties, Compos. Struct., 232, Article 111476 pp. (2020)
[7] Almeida, J. H.S.; Bittrich, L.; Spickenheuer, A., Improving the open-hole tension characteristics with variable-axial composite laminates: Optimization, progressive damage modeling and experimental observations, Compos. Sci. Technol., 185, Article 107889 pp. (2020)
[8] Gürdal, Z.; Tatting, B. F.; Wu, C. K., Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response, Composites A, 39, 911-922 (2008)
[9] Malakhov, A. V.; Polilov, A. N.; Zhang, J.; Hou, Z.; Tian, X., A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures, Appl. Compos. Mater., 27, 185-208 (2020)
[10] Tatting, B. F., Design and Manufacture of Elastically Tailored Tow Placed Plates (2002), National Aeronautics and Space Administration, Langley Research Center
[11] Kim, B. C.; Potter, K.; Weaver, P. M., Continuous tow shearing for manufacturing variable angle tow composites, Composites A, 43, 1347-1356 (2012)
[12] Kim, B. C.; Weaver, P. M.; Potter, K., Computer aided modelling of variable angle tow composites manufactured by continuous tow shearing, Compos. Struct., 129, 256-267 (2015)
[13] Matsuzaki, R.; Nakamura, T.; Sugiyama, K.; Ueda, M.; Todoroki, A.; Hirano, Y.; Yamagata, Y., Effects of set curvature and fiber bundle size on the printed radius of curvature by a continuous carbon fiber composite 3D printer, Addit. Manuf., 24, 93-102 (2018)
[14] Sugiyama, K.; Matsuzaki, R.; Malakhov, A. V.; Polilov, A. N.; Ueda, M.; Todoroki, A.; Hirano, Y., 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber, Compos. Sci. Technol., 186, Article 107905 pp. (2020)
[15] Albazzan, M. A.; Harik, R.; Tatting, B. F.; Gürdal, Z., Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art, Compos. Struct., 209, 362-374 (2019)
[16] Demir, E.; Yousefi-Louyeh, P.; Yildiz, M., Design of variable stiffness composite structures using lamination parameters with fiber steering constraint, Composites B, 165, 733-746 (2019)
[17] Hao, P.; Yuan, X.; Liu, C.; Wang, B.; Liu, H.; Li, G.; Niu, F., An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Engrg., 339, 205-238 (2018) · Zbl 1440.74399
[18] Rasool, M.; Singha, M. K., Stability behavior of variable stiffness composite panels under periodic in-plane shear and compression, Composites B, 172, 472-484 (2019)
[19] Niu, X. J.; Yang, T.; Du, Y.; Xue, Z. Q., Tensile properties of variable stiffness composite laminates with circular holes based on potential flow functions, Arch. Appl. Mech., 86, 1551-1563 (2016)
[20] Pan, Z.; Zhang, L.-W.; Liew, K. M., Adaptive surrogate-based harmony search algorithm for design optimization of variable stiffness composite materials, Comput. Methods Appl. Mech. Engrg., 379, Article 113754 pp. (2021) · Zbl 1506.74250
[21] Li, D. M.; Featherston, C. A.; Wu, Z., An element-free study of variable stiffness composite plates with cutouts for enhanced buckling and post-buckling performance, Comput. Methods Appl. Mech. Engrg., 371, Article 113314 pp. (2020) · Zbl 1506.74128
[22] Vescovini, R.; Dozio, L., A variable-kinematic model for variable stiffness plates: Vibration and buckling analysis, Compos. Struct., 142, 15-26 (2016)
[23] Lopes, C. S.; Gürdal, Z.; Camanho, P. P., Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates, Comput. Struct., 86, 897-907 (2008)
[24] Lopes, C. S.; Camanho, P. P.; Gürdal, Z.; Tatting, B. F., Progressive failure analysis of tow-placed, variable-stiffness composite panels, Int. J. Solids Struct., 44, 8493-8516 (2007) · Zbl 1167.74555
[25] Hirshikesh; Natarajan, S.; Annabattula, R. K., Modeling crack propagation in variable stiffness composite laminates using the phase field method, Compos. Struct., 209, 424-433 (2019)
[26] Cahill, L. M.A.; Natarajan, S.; Bordas, S. P.A.; O’Higgins, R. M.; McCarthy, C. T., An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae, Compos. Struct., 107, 119-130 (2014)
[27] Zhang, P.; Hu, X.; Bui, T. Q.; Yao, W., Phase field modeling of fracture in fiber reinforced composite laminate, Int. J. Mech. Sci., 161-162, Article 105008 pp. (2019)
[28] Kiendl, J.; Ambati, M.; De Lorenzis, L.; Gomez, H.; Reali, A., Phase-field description of brittle fracture in plates and shells, Comput. Methods Appl. Mech. Engrg., 312, 374-394 (2016) · Zbl 1439.74357
[29] Wu, J.-Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[30] Zhou, S.; Zhuang, X.; Rabczuk, T., Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation, Comput. Methods Appl. Mech. Engrg., 355, 729-752 (2019) · Zbl 1441.74223
[31] Pichler, N.; Herráez, M.; Botsis, J., Mixed-mode fracture response of anti-symmetric laminates: Experiments and modelling, Composites B, 197, Article 108089 pp. (2020)
[32] Nguyen, V. P.; Kerfriden, P.; Bordas, S. P.A., Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis, Composites B, 60, 193-212 (2014)
[33] Özenç, K.; Kaliske, M., An implicit adaptive node-splitting algorithm to assess the failure mechanism of inelastic elastomeric continua, Internat. J. Numer. Methods Engrg., 100, 669-688 (2014) · Zbl 1352.74070
[34] Wu, J.-Y.; Nguyen, V. P., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20-42 (2018)
[35] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[36] Amiri, F.; Millán, D.; Arroyo, M.; Silani, M.; Rabczuk, T., Fourth order phase-field model for local max-ent approximants applied to crack propagation, Comput. Methods Appl. Mech. Engrg., 312, 254-275 (2016) · Zbl 1439.74339
[37] Yin, B. B.; Zhang, L. W., Phase field method for simulating the brittle fracture of fiber reinforced composites, Eng. Fract. Mech., 211, 321-340 (2019)
[38] Alessi, R.; Freddi, F., Failure and complex crack patterns in hybrid laminates: A phase-field approach, Composites B, 179, Article 107256 pp. (2019)
[39] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[40] Carlsson, J.; Isaksson, P., A statistical geometry approach to length scales in phase field modelling of fracture and strength of porous microstructures, Int. J. Solids Struct., 200-201, 83-93 (2020)
[41] Kumar, A.; Bourdin, B.; Francfort, G. A.; Lopez-Pamies, O., Revisiting nucleation in the phase-field approach to brittle fracture, J. Mech. Phys. Solids, 142, Article 104027 pp. (2020)
[42] Li, G.; Yin, B. B.; Zhang, L. W.; Liew, K. M., Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase-field model, J. Mech. Phys. Solids, 142, Article 103968 pp. (2020)
[43] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[44] Quintanas-Corominas, A.; Turon, A.; Reinoso, J.; Casoni, E.; Paggi, M.; Mayugo, J. A., A phase field approach enhanced with a cohesive zone model for modeling delamination induced by matrix cracking, Comput. Methods Appl. Mech. Engrg., 358, Article 112618 pp. (2020) · Zbl 1441.74195
[45] Seleš, K.; Lesičar, T.; Tonković, Z.; Sorić, J., A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205, 370-386 (2019)
[46] Cheng, T.-L.; Wen, Y.-H.; Hawk, J. A., Modeling elasto-viscoplasticity in a consistent phase field framework, Int. J. Plast., 96, 242-263 (2017)
[47] Rodriguez, P.; Ulloa, J.; Samaniego, C.; Samaniego, E., A variational approach to the phase field modeling of brittle and ductile fracture, Int. J. Mech. Sci., 144, 502-517 (2018)
[48] Espadas-Escalante, J. J.; van Dijk, N. P.; Isaksson, P., A phase-field model for strength and fracture analyses of fiber-reinforced composites, Compos. Sci. Technol., 174, 58-67 (2019)
[49] Kakouris, E. G.; Triantafyllou, S. P., Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy, Comput. Methods Appl. Mech. Engrg., 357, Article 112503 pp. (2019) · Zbl 1442.74206
[50] Tian, F.; Zeng, J.; Tang, X.; Xu, T.; Li, L., A dynamic phase field model with no attenuation of wave speed for rapid fracture instability in hyperelastic materials, Int. J. Solids Struct., 202, 685-698 (2020)
[51] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput. Methods Appl. Mech. Engrg., 341, 443-466 (2018) · Zbl 1440.74352
[52] Gültekin, O.; Dal, H.; Holzapfel, G. A., Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model, Comput. Methods Appl. Mech. Engrg., 331, 23-52 (2018) · Zbl 1439.74199
[53] Li, B.; Maurini, C., Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy, J. Mech. Phys. Solids, 125, 502-522 (2019) · Zbl 1474.74089
[54] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M. A., Phase field modeling of fracture in anisotropic brittle solids, Int. J. Nonlinear Mech., 97, 1-21 (2017)
[55] Loew, P. J.; Peters, B.; Beex, L. A.A., Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification, J. Mech. Phys. Solids, 127, 266-294 (2019)
[56] Miehe, C.; Welschinger, F.; Hofacker, M., A phase field model of electromechanical fracture, J. Mech. Phys. Solids, 58, 1716-1740 (2010) · Zbl 1200.74123
[57] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[58] Sridhar, A.; Keip, M. A., A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics, Int. J. Fract. (2019)
[59] Denli, F. A.; Gültekin, O.; Holzapfel, G. A.; Dal, H., A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites, Comput. Mech., 65, 1149-1166 (2020) · Zbl 1462.74137
[60] Quintanas-Corominas, A.; Reinoso, J.; Casoni, E.; Turon, A.; Mayugo, J. A., A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials, Compos. Struct., 220, 899-911 (2019)
[61] Bleyer, J.; Alessi, R., Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Engrg., 336, 213-236 (2018) · Zbl 1440.74354
[62] Dean, A.; Asur Vijaya Kumar, P. K.; Reinoso, J.; Gerendt, C.; Paggi, M.; Mahdi, E.; Rolfes, R., A multi phase-field fracture model for long fiber reinforced composites based on the puck theory of failure, Compos. Struct., 251, Article 112446 pp. (2020)
[63] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elast., 91, 5-148 (2008) · Zbl 1176.74018
[64] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118 (2014) · Zbl 1296.74098
[65] Clayton, J. D.; Knap, J., Phase field modeling of directional fracture in anisotropic polycrystals, Comput. Mater. Sci., 98, 158-169 (2015)
[66] Nguyen, T. T.; Réthoré, J.; Baietto, M.-C., Phase field modelling of anisotropic crack propagation, Eur. J. Mech. A-Solids, 65, 279-288 (2017) · Zbl 1406.74602
[67] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[68] Bilgen, C.; Kopaničáková, A.; Krause, R.; Weinberg, K., A detailed investigation of the model influencing parameters of the phase-field fracture approach, GAMM-Mitt. (2019)
[69] Pillai, U.; Triantafyllou, S. P.; Essa, Y.; de la Escalera, F. M., An anisotropic cohesive phase field model for quasi-brittle fractures in thin fibre-reinforced composites, Compos. Struct., 252, Article 112635 pp. (2020)
[70] Pan, Z. Z.; Zhang, L. W.; Liew, K. M., Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers, Comput. Methods Appl. Mech. Engrg., 355, 753-778 (2019) · Zbl 1441.74214
[71] Pan, Z.; Liew, K. M., Predicting vibration characteristics of rotating composite blades containing CNT-reinforced composite laminae and damaged fiber-reinforced composite laminae, Compos. Struct., 250, Article 112580 pp. (2020)
[72] Amor, H.; Marigo, J.-J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[73] Knops, M., Analysis of Failure in Fiber Polymer Laminates: The Theory of Alfred Puck (2008), Springer Science & Business Media
[74] Bryant, E. C.; Sun, W., A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics, Comput. Methods Appl. Mech. Engrg., 342, 561-584 (2018) · Zbl 1440.74218
[75] Hofacker, M.; Miehe, C., Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, Int. J. Fract., 178, 113-129 (2012)
[76] Wick, T., Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Comput. Mech., 57, 1017-1035 (2016) · Zbl 1382.74130
[77] Storvik, E.; Both, J. W.; Sargado, J. M.; Nordbotten, J. M.; Radu, F. A., An accelerated staggered scheme for variational phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 381, Article 113822 pp. (2021) · Zbl 1506.74366
[78] Čermák, M.; Sysala, S.; Valdman, J., Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems, Appl. Math. Comput., 355, 595-614 (2019) · Zbl 1428.74043
[79] Felger, J.; Stein, N.; Becker, W., Mixed-mode fracture in open-hole composite plates of finite-width: An asymptotic coupled stress and energy approach, Int. J. Solids Struct., 122-123, 14-24 (2017)
[80] Modniks, J.; Spārniņš, E.; Andersons, J.; Becker, W., Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension, J. Compos. Mater., 49, 1071-1080 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.