×

Trace formulas for Schrödinger operators on star graphs with general matching conditions. (English) Zbl 1397.81075

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
05C12 Distance in graphs
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agranovich, Z. S.; Marchenko, V. A., The Inverse Problem of Scattering Theory, (1963), London: Gordon and Breach, London · Zbl 0117.06003
[2] Aktosun, T., Inverse scattering on the line with incomplete scattering data, Partial Differential Equations and Inverse Problems, 1-11, (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1072.34010
[3] Aktosun, T.; Klaus, M.; Weder, R., Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line, J. Math. Phys., 52, (2011) · Zbl 1272.81048
[4] Aktosun, T.; Weder, R., High-energy analysis and Levinson’s theorem for the self-adjoint matrix Schrödinger operator on the half line, J. Math. Phys., 54, (2013) · Zbl 1280.81032
[5] Berkolaiko, G.; Kuchment, P., Introduction to Quantum Graphs, 14-270, (2013), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1318.81005
[6] Birman, M. S.; Yafaev, D. R., The spectral shift function: The papers of M G Krein and their further developments, St. Petersburg Math. J., 4, 833-870, (1993)
[7] Bollé, D., Sum rules in scattering theory and applications to statistical mechanics, Lectures on Recent Results, 84-153, (1986), Singapore: World Scientific, Singapore · Zbl 0692.35071
[8] Boumenir, A.; Tuan, V. K., A trace formula and Schmincke inequality on the half-line, Proc. Am. Math. Soc., 137, 1039-1049, (2009) · Zbl 1173.34053
[9] Buslaev, V. S.; Faddeev, L. D., Formulas for traces for a singular Sturm–Liouville differential operator, Sov. Math. Dokl., 1, 451-454, (1960) · Zbl 0129.06501
[10] Deift, P.; Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl. Math., 32, 121-251, (1979) · Zbl 0388.34005
[11] Demirel-Frank, S.; Shou, L., Trace formulas for Schrödinger operators on star graphs, Bull. Math. Sci., 8, 15-31, (2016) · Zbl 1387.81222
[12] Demirel, S.; Usman, M., Trace formulas for Schrödinger operators on the half-line, Bull. Math. Sci., 1, 397-427, (2011) · Zbl 1256.35041
[13] Exner, P.; Šeba, P., Free quantum motion on a branching graph, Rep. Math. Phys., 28, 7-26, (1989) · Zbl 0749.47038
[14] Figotin, A.; Kuchment, P., Spectral properties of classical waves in high contrast periodic media, SIAM J. Appl. Math., 58, 683-702, (1998) · Zbl 0916.35011
[15] Gerasimenko, N. I., The inverse scattering problem on a noncompact graph, Teor. Mat. Fiz., 75, 187-200, (1988)
[16] Gesztesy, F.; Holden, H., On trace formulas for Schrödinger-type operators, Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics (Minneapolis, MN, 1995), 121-145, (1997), New York: Springer, New York · Zbl 0881.34027
[17] Gesztesy, F.; Holden, H.; Simon, B.; Zhao, Z., A trace formula for multidimensional Schrödinger operators, J. Funct. Anal., 141, 449-465, (1996) · Zbl 0864.35030
[18] Gnutzmann, S.; Smilansky, U., Quantum graphs: applications to quantum chaos and universal spectral statistics, Adv. Phys., 55, 527-625, (2006)
[19] Harmer, M. S., Inverse scattering on matrices with boundary conditions, J. Phys. A: Math. Gen., 38, 4875-4885, (2005) · Zbl 1071.81100
[20] Harmer, M. S., Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions, ANZIAM J., 44, 161-168, (2002) · Zbl 1017.34085
[21] Harmer, M. S., The matrix Schrödinger operator and Schrödinger operator on graphs, PhD Thesis, (2004) · Zbl 1017.34085
[22] Killip, R., Spectral theory via sum rules, Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, 907-930, (2007), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1137.47001
[23] Kostrykin, V.; Schrader, R., Kirchhoff rule for quantum wires, J. Phys. A: Math. Gen., 32, 595-630, (1999) · Zbl 0928.34066
[24] Kottos, T.; Smilansky, U., Quantum chaos on graphs, Phys. Rev. Lett., 79, 4794-4797, (1997)
[25] Kuchment, P., Quantum graphs: I. Some basic structures, Waves Random Media, 14, S107-S128, (2004) · Zbl 1063.81058
[26] Kuchment, P., Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen., 38, 4887-4900, (2005) · Zbl 1070.81062
[27] Kurasov, P., Quantum graphs: spectral theory and inverse problems, Basel: Birkhäuser, Basel · Zbl 1200.81072
[28] Laptev, A.; Weidl, T., Sharp Lieb–Thirring inequalities in high dimensions, Acta Math., 184, 87-111, (2000) · Zbl 1142.35531
[29] Lieb, E. H.; Thirring, W., Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics, 269-303, (1976), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0342.35044
[30] Post, O., Spectral Analysis on Graph-Like Spaces, (2012), Heidelberg: Springer, Heidelberg · Zbl 1247.58001
[31] Smilansky, U., Quantum chaos on discrete graphs, J. Phys. A: Math. Theor., 40, F621-F630, (2007) · Zbl 1124.81024
[32] Yafaev, D. R., Mathematical Scattering Theory, Analytic Theory, (2010), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1197.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.